In this work, different carbonaceous materials based on floated sludge from a poultry industry wastewater treatment plant (PI-WTP) were synthesized. These materials were characterized and investigated in methylene blue dye (MB) adsorption. The influences of the initial pH solution, adsorbent dosage, kinetics, equilibrium, and thermodynamics were evaluated in the adsorption experiments. A simulation of a real textile effluent was also carried out to evaluate the adsorbent. The results of the adsorbents' characterization demonstrated that adding ZnCl + lime, followed by pyrolysis and acid leaching, significantly improved the material's properties, leading to abundant porosity and high surface area. The adsorption experiments indicated that the natural pH of the solution (8.0) and the AC-II dosage of 0.75 g L are optimal for MB removal. Elovich and Sips' models (with a maximum adsorption capacity of 221.02 mg g at 328 K) best fitted the experimental kinetic and equilibrium data, respectively. The adsorption process is spontaneous and endothermic according to thermodynamic parameters. The discoloration efficiency of the simulated effluent was 67.8%. In conclusion, the floated sludge, a residue produced on a large scale that needs to be disposed of correctly, can be converted into a value-added material (carbonaceous adsorbent) and applied to treat colored effluents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-27756-x | DOI Listing |
J Hazard Mater
January 2025
Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China. Electronic address:
The primary challenges impeding the extensive application of adsorption for indoor air purification have been low efficiency and effective capacity. To fill the research gap, we developed carbonaceous net-like adsorption films featuring multi-scale porous structures for efficient indoor formaldehyde removal. By optimizing the interfacial mass transfer and internal diffusion, we designed macro- to mesoscale meshes on the film surface and micro- to nano-scale pores within the materials, which were achieved by direct-ink-writing (DIW) printing and sacrificial template methods, respectively.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.
View Article and Find Full Text PDFBiogeochemistry
January 2025
Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar.
Unlabelled: Blue carbon represents the organic carbon retained in marine coastal ecosystems. (an Arabic for "mudflats"), formed in tidal environments under arid conditions, have been proposed to be capable of carbon sequestrating. Despite the growing understanding of the critical role of blue carbon ecosystems, there is a current dispute about whether sabkhas around the Persian Gulf can contribute to carbon retention as a blue carbon ecosystem.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Environment and Energy, South China University of Technology, Guangzhou 510006 China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou 510640 China. Electronic address:
Bimetallic catalysts have notable advantages in the field of persulfate activation owing to their intermetallic synergy. However, studies on stimulating the potential concentration effect through intermetallic coordination to enhance the electron transfer efficiency are limited. In this study, a cobalt (Co) and zinc (Zn) bimetallic yolk-shell structured high-efficiency peroxymonosulfate (PMS) catalyst (Z67@8-HCNF) was prepared by the derivatization of metal-organic backbone materials and was found to produce significant synergistic interactions between Co and Zn metals, which could be utilized to trigger the potential concentration effect to enhance the intermolecular electron transfer efficiency and achieve efficient PMS activation.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Solar System Exploration Division, NASA Goddard Space Center, Greenbelt, Maryland, USA.
Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.
Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!