The tautomerizations mechanism of 4-(methylsulfanyl)-3[(1Z)-1-(2-phenylhydrazinylidene) ethyl] quinoline-2(1H)-one were inspected in the gas phase and ethanol using density function theory (DFT) M06-2X and B3LYP methods. Thermo-kinetic features of different conversion processes were estimated in temperature range 273-333 K using the Transition state theory (TST) accompanied with one dimensional Eckert tunneling correction (1D-Eck). Acidity and basicity were computed as well, and the computational results were compared against the experimental ones. Additionally, NMR, global descriptors, Fukui functions, NBO charges, and electrostatic potential (ESP) were discussed. From thermodynamics analysis, the keto form of 4-(methylsulfanyl)-3-[(1Z)-1-(2 phenylhydrazinylidene) quinoline-2(1H)-one is the most stable form in the gas phase and ethanol and the barrier heights required for tautomerization process were found to be high in the gas phase and ethanol ~ 38.80 and 37.35 kcal/mol, respectively. DFT methods were used for UV-Vis electronic spectra simulation and the time-dependent density functional theory solvation model (TDDFT-SMD) in acetonitrile compounds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235042 | PMC |
http://dx.doi.org/10.1038/s41598-023-35933-8 | DOI Listing |
Sci Rep
January 2025
Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Türkiye.
In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechanics and Engineering, Liaoning Technical University, Fuxin, 123000, China.
Uniaxial compression experiments were conducted on coal rock utilizing a computed tomography (CT) scanning system for real-time monitoring to explain the issue of gas volume significantly exceeding reservoir capacity during coal and gas outbursts. A percolation factor a which can make a significant contribution to the research on premonitory information of gas outbursts is introduced to determine whether percolation occurs in coal rock, and supports the outburst percolation theory. It was found that percolation probability and correlation length increase with greater porosity, and that the number of pore clusters decreases as porosity increases.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology (LUT), Yliopistonkatu 34, 53850, Lappeenranta, Finland.
As the global consumption of pharmaceuticals increases, so does their release into water bodies. The effects, although not fully understood, can be detrimental to aquatic ecosystems and human health. The new Urban Wastewater Treatment Directive (UWWTD) in European Union requires implementation of quaternary wastewater treatment processes to limit the loads of pharmaceuticals reaching water bodies.
View Article and Find Full Text PDFChemosphere
January 2025
Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), 26504, Patras, Greece. Electronic address:
The goal of the present work is to quantify the performance of ozonation as a method for the in situ remediation of soils polluted at varying degree with different types of hydrocarbons, and assess its applicability, in terms of remediation efficiency, cost factors, and environmental impacts. Ozonation tests are conducted on dry soil beds, for three specific cases: sandy soil contaminated with low, moderate and high concentration of a non-aqueous phase liquid (NAPL) consisting of equal concentrations of n-decane, n-dodecane, and n-hexadecane; sandy soil polluted with diesel fuel; oil-drilling cuttings (ODC). The transient changes of the concentration of the total organic carbon (TOC), total petroleum hydrocarbons (TPH), polycyclic aromatic hydrocarbons (PAHs), and soluble chemical oxygen demand (SCOD) in soil and carbon dioxide (CO), carbon monoxide (CO), volatile organic compounds (VOCs), and ozone (O) in exhaust gases are recorded.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!