Mussels of order Unionida are a group of strictly freshwater bivalves with nearly 1,000 described species widely dispersed across world freshwater ecosystems. They are highly threatened showing the highest record of extinction events within faunal taxa. Conservation is particularly concerning in species occurring in the Mediterranean biodiversity hotspot that are exposed to multiple anthropogenic threats, possibly acting in synergy. That is the case of the dolphin freshwater mussel Unio delphinus Spengler, 1793, endemic to the western Iberian Peninsula with recently strong population declines. To date, only four genome assemblies are available for the order Unionida and only one European species. We present the first genome assembly of Unio delphinus. We used the PacBio HiFi to generate a highly contiguous genome assembly. The assembly is 2.5 Gb long, possessing 1254 contigs with a contig N50 length of 10 Mbp. This is the most contiguous freshwater mussel genome assembly to date and is an essential resource for investigating the species' biology and evolutionary history that ultimately will help to support conservation strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235117 | PMC |
http://dx.doi.org/10.1038/s41597-023-02251-7 | DOI Listing |
Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.
View Article and Find Full Text PDFSci Data
January 2025
Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi'an, China.
Ditylenchus destructor, commonly known as the potato rot nematode, is a significant plant-parasitic pathogen affecting over 120 plant species globally. Effective control measures for D. destructor are limited, underscoring the need a high-quality reference genome to understand its pathogenic mechanisms.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany. Electronic address:
The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered.
View Article and Find Full Text PDFInt J Antimicrob Agents
January 2025
Department of Botany, Institute of Science, Banaras Hindu, University, Varanasi, Uttar Pradesh, 221005, India. Electronic address:
Global demand for food has driven expansion and intensification of livestock production, particularly in developing nations where antibiotic use is often routine. Waste from poultry production, including manure, is commonly utilized as fertilizers in agroecosystems, risking environmental contamination with potentially zoonotic bacteria and antimicrobial resistance genes (ARGs). Here, 33 bacterial isolates were recovered from broiler (n=17) and layer (n=16) chicken manure by aerobic culture using Luria Bertani agar.
View Article and Find Full Text PDFGenomics
January 2025
Shennong Laboratory/ Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China. Electronic address:
High-oleic peanuts are increasingly valued in agricultural production and consumer markets. Nevertheless, limited genomic information hinders the integration of genetic analyses and modern breeding strategies. This study details a chromosome-level genome assembly of Kaixuan 016, a high-oleic peanut variety developed through gamma-radiation-assisted breeding, exhibiting enhanced agronomic traits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!