Transposon signatures of allopolyploid genome evolution.

Nat Commun

Department of Molecular and Cell, University of California, Berkeley, CA, 94720, USA.

Published: June 2023

Hybridization brings together chromosome sets from two or more distinct progenitor species. Genome duplication associated with hybridization, or allopolyploidy, allows these chromosome sets to persist as distinct subgenomes during subsequent meioses. Here, we present a general method for identifying the subgenomes of a polyploid based on shared ancestry as revealed by the genomic distribution of repetitive elements that were active in the progenitors. This subgenome-enriched transposable element signal is intrinsic to the polyploid, allowing broader applicability than other approaches that depend on the availability of sequenced diploid relatives. We develop the statistical basis of the method, demonstrate its applicability in the well-studied cases of tobacco, cotton, and Brassica napus, and apply it to several cases: allotetraploid cyprinids, allohexaploid false flax, and allooctoploid strawberry. These analyses provide insight into the origins of these polyploids, revise the subgenome identities of strawberry, and provide perspective on subgenome dominance in higher polyploids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235133PMC
http://dx.doi.org/10.1038/s41467-023-38560-zDOI Listing

Publication Analysis

Top Keywords

chromosome sets
8
transposon signatures
4
signatures allopolyploid
4
allopolyploid genome
4
genome evolution
4
evolution hybridization
4
hybridization brings
4
brings chromosome
4
sets distinct
4
distinct progenitor
4

Similar Publications

Identification of a critical interval for type 2 diabetes QTL on chromosome 4 in DDD-A mice.

Mamm Genome

January 2025

Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-0901, Japan.

Type 2 diabetes mellitus (T2D) in male KK-A and B6-A mice is typically associated with hyperinsulinemia, whereas male DDD-A mice exhibit a marked decrease in circulating insulin levels due to the loss of pancreatic islet β-cells. T2D in male DDD-A mice is linked to Nidd/DDD, a significant quantitative trait locus (QTL) mapped with a 95% confidence interval (CI) between 112.44 and 151.

View Article and Find Full Text PDF

scHiClassifier: a deep learning framework for cell type prediction by fusing multiple feature sets from single-cell Hi-C data.

Brief Bioinform

November 2024

School of Software, Shandong University, No. 1500, Shunhua Road, Hi-Tech Industrial Development Zone, Jinan 250100, Shandong, China.

Single-cell high-throughput chromosome conformation capture (Hi-C) technology enables capturing chromosomal spatial structure information at the cellular level. However, to effectively investigate changes in chromosomal structure across different cell types, there is a requisite for methods that can identify cell types utilizing single-cell Hi-C data. Current frameworks for cell type prediction based on single-cell Hi-C data are limited, often struggling with features interpretability and biological significance, and lacking convincing and robust classification performance validation.

View Article and Find Full Text PDF

gscramble: Simulation of Admixed Individuals Without Reuse of Genetic Material.

Mol Ecol Resour

January 2025

United States Department of Agriculture, Wildlife Services, National Wildlife Research Center, Fort Collins, Colorado, USA.

While a best practice for evaluating the behaviour of genetic clustering algorithms on empirical data is to conduct parallel analyses on simulated data, these types of simulation techniques often involve sampling genetic data with replacement. In this paper we demonstrate that sampling with replacement, especially with large marker sets, inflates the perceived statistical power to correctly assign individuals (or the alleles that they carry) back to source populations-a phenomenon we refer to as resampling-induced, spurious power inflation (RISPI). To address this issue, we present gscramble, a simulation approach in R for creating biologically informed individual genotypes from empirical data that: (1) samples alleles from populations without replacement and (2) segregates alleles based on species-specific recombination rates.

View Article and Find Full Text PDF

High-grade B-cell lymphoma with 11q aberration (HGBCL-11q) is a rare germi-nal centre lymphoma characterised by a typical gain/loss pattern on chromo-some 11q but without MYC translocation. It shares some features with Burkitt lymphoma (BL), HGBCLs and germinal centre-derived diffuse large B-cell lym-phoma, not otherwise specified (GCB-DLBCL-NOS). Since microRNA expression in HGBCL-11q remains unknown, we aimed to identify and compare the mi-croRNA expression profiles in HGBCL-11q, BL and in GCB-DLBCL-NOS.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!