Tumor necrosis factor receptor-associated factors (TRAFs), as the signaling mediators of the tumor necrosis factor (TNFR) superfamily, toll-like receptors (TLR) and interleukin-1 receptor (IL-1R) superfamily, can activate downstream signal transduction pathways and play an important role in the body's immune process. In this study, six TRAF genes, namely PoTRAF2a, PoTRAF2b, PoTRAF3, PoTRAF4, PoTRAF6 and PoTRAF7, were identified and annotated in Japanese flounder by using bioinformatics methods. Phylogenetic analysis confirmed that TRAF genes can be divided into seven groups. Analysis of motif composition and gene structure demonstrated that all PoTRAF members were evolutionarily conserved. The expression patterns of PoTRAF genes were then further investigated in six different developmental stages and eleven tissues of healthy fish, and it was found that there were spatial and tissue specificities among the members. To investigate the immune response of Japanese flounder to abiotic and biotic stresses, we further analyzed the expression profile of PoTRAFs after temperature stress and pathogen challenge. The result showed that PoTRAF3 and PoTRAF4 were observably differentially expressed under temperature stress, indicating that they were involved in the immune response after temperature stress. The expression of PoTRAF2a, PoTRAF2b and PoTRAF4 was significantly different after E. tarda infection, suggesting that they might have antibacterial effects. These results would help to clarify the molecular roles of PoTRAF genes in the regulation of immune and inflammatory responses in Japanese flounder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2023.108862 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!