Open riparian canopy and nutrient pollution interactively decrease trophic redundancy and allochthonous resource in streams.

Environ Res

Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences, Hubei Province, China.

Published: August 2023

AI Article Synopsis

Article Abstract

Riparian deforestation, which leads to increase in light intensity and excessive nutrient loading in waterways, are two pervasive environmental stressors in the stream ecosystems. Both have been found to alter basal resource availability and consequently stream food webs. However, their interactive effects on trophic structure in stream food webs are unclear. Here, we manipulated light intensity and nutrient availability in three headwater streams to evaluate their effects on consumer diet composition and food web characteristics (i.e., trophic diversity and redundancy) with stable isotope analysis. Dietary analysis revealed that the relative contribution of stream periphyton to the diets of macroinvertebrates increased, while that of allochthonous resources, specifically leaf litter from the terrestrial ecosystems in the catchment, decreased in response to open canopy and nutrient enrichment in the streams. The trophic diversity also increased with the elevated light intensity and nutrient availability, while the trophic redundancy decreased, suggesting a reduced ability of the stream ecosystems to resist environmental changes. Nutrient enrichment also increased the δN ratios of periphyton and macroinvertebrates, indicating potential δN enrichment of stream benthos by nitrogen pollution. Our results suggested that an increase in light intensity due to riparian canopy openness and stream water nutrient enrichment primarily from human activities have interactive effects on resource flow and trophic structure in stream food webs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2023.116296DOI Listing

Publication Analysis

Top Keywords

light intensity
16
stream food
12
food webs
12
nutrient enrichment
12
riparian canopy
8
canopy nutrient
8
trophic redundancy
8
increase light
8
stream
8
stream ecosystems
8

Similar Publications

Fabrication of hierarchical sapphire nanostructures using ultrafast laser induced morphology change.

Nanotechnology

January 2025

Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.

Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.

View Article and Find Full Text PDF

Two versatile yet simple methods, colorimetric and spectrofluorimetric, were utilized for the quantitation of nonchromophore neomycin using silver nanoparticles modified with fluorescein. Fluorescein was excited at 485 nm (emission at 515 nm); when it is deposited on the surface of silver nanoparticles, its fluorescence intensity at 515 nm is quenched. Neomycin restores the fluorescence level at 515 nm by displacing fluorescein from nanoparticle binding sites.

View Article and Find Full Text PDF

Development of national post-fire restoration system to assess net GHG impacts and salvage biomass availability.

MethodsX

December 2024

Natural Resources Canada, Canadian Forest Service, 506 Burnside Road West, Victoria, BC, V8Z1M5, Canada.

In light of the recent unprecedented wildfires in Canada and the potential for increasing burned areas in the future, there is a need to explore post-fire salvage harvest and restoration and the implications for greenhouse gas (GHG) emissions. Salvage logging and replanting initiatives offer a potential solution by regrowing forests more quickly while meeting societal demands for wood and bioenergy. This study presents a comprehensive modeling framework to estimate post-fire salvage biomass and net GHG emissions relative to a 'do-nothing' baseline for all of Canada's harvest-eligible forests.

View Article and Find Full Text PDF

Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F.

View Article and Find Full Text PDF

Background: Renal fibrosis is strongly correlated with renal functional outcomes. Therefore, this is a significant finding in determining renal prognosis. There are various reports on the imaging evaluation of renal fibrosis, but these are not well established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!