B7-H3 (CD276), an immune checkpoint molecule, is aberrantly overexpressed in many types of cancer, and plays important roles in tumor immune evasion, carcinogenesis and metastasis, as well as angiogenesis. However, the mechanisms underlying B7-H3-promoted angiogenesis are still largely unknown. In this study, based on the observation of overexpression of B7-H3 on the tumor cells and vascular endothelial cells (VECs) in colorectal cancer (CRC) tissues, we investigated the roles of cancer cell-drived exosomal B7-H3 in tumor angiogenesis and metastasis through crosstalk between cancer cells and VECs. We found that CRC cell-drived exosomal B7-H3 was uptaken by human umbilical vein endothelial cells (HUVECs) and consequently activated the AKT serine/threonine kinase 1 (AKT1) / mechanistic target of rapamycin kinase (mTOR) / vascular endothelial growth factor A (VEGFA) signaling pathway, thus augmenting the abilities of migration, invasion and tube formation of HUVECs. Furthermore, administration of CRC cell-drived exosomes with reinforced B7-H3 promoted the pulmonary angiogenesis and metastasis of CRC cells in mice. In addition, high expression of B7-H3 was observed in urinary exosomes isolated from CRC patients. Our findings reveal that CRC-derived exosomal B7-H3 promotes tumor angiogenesis and metastasis by activating the AKT1/mTOR/VEGFA signaling pathway. It provides novel insights into the roles of CRC-drived exosomes in CRC progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2023.110737 | DOI Listing |
BMC Nutr
March 2024
Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran.
Background: Tumor cells express immune-checkpoint molecules to suppress anti-tumor immune responses. In part, immune evasion takes place by secreting exosomes bearing immune-checkpoint and immunomodulatory molecules and their inducing and/or regulating agents e.g.
View Article and Find Full Text PDFTransl Oncol
March 2024
Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, China. Electronic address:
Cell Signal
September 2023
Department of oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province 214122, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China. Electronic address:
B7-H3 (CD276), an immune checkpoint molecule, is aberrantly overexpressed in many types of cancer, and plays important roles in tumor immune evasion, carcinogenesis and metastasis, as well as angiogenesis. However, the mechanisms underlying B7-H3-promoted angiogenesis are still largely unknown. In this study, based on the observation of overexpression of B7-H3 on the tumor cells and vascular endothelial cells (VECs) in colorectal cancer (CRC) tissues, we investigated the roles of cancer cell-drived exosomal B7-H3 in tumor angiogenesis and metastasis through crosstalk between cancer cells and VECs.
View Article and Find Full Text PDFOncol Rep
June 2023
Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA.
The most aggressive subtype of medulloblastoma (MB), Group 3, is characterized by MYC amplifications. However, targeting MYC has proven unsuccessful, and there remains a lack of therapeutic targets for treating MB. Studies have shown that the B7 homolog 3 (B7‑H3) promotes cell proliferation and tumor cell invasion in a variety of cancers.
View Article and Find Full Text PDFCancers (Basel)
September 2022
Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy.
High-risk neuroblastomas (HR-NB) still have an unacceptable 5-year overall survival despite the aggressive therapy. This includes standardized immunotherapy combining autologous hemopoietic stem cell transplantation (HSCT) and the anti-GD2 mAb. The treatment did not significantly change for more than one decade, apart from the abandonment of IL-2, which demonstrated unacceptable toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!