Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early and simple detection of aberrant cooper metabolism in diseases with neurological-manifestations and several other conditions, including cancer, becomes an urgent necessity. Instrumental methods used today are limited to high-cost equipment and reagents and demand highly qualified personnel. In this work, we report easy-to-use and cost-effective nano-sized sensors for the selective and quantitative detection of copper ion based on fluorescence quenching. Glutaraldehyde cross-linked albumin nanoparticles with tunable ultraviolet-to-red autofluorescence emissions are developed as dual-agents for sensing and imaging. These albumin nanoparticles show great selectivity towards copper ion when tested against a selection of biochemical components and other metal ions, and a limit of detection as low as 1.9 μM, relevant for sensing in clinical diagnosis, was determined. In addition, a lack of toxicity and good cellular uptake were observed and the ultraviolet-to-red intrinsic fluorescence of the albumin nanoparticles was preserved when tested in vitro on NIH:OVCAR3 cell line. Preliminary studies confirm the albumin nanoparticles' ability to detect Cuin vitro and establishes their potential for future practical use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.125129 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!