Personal Mobility Choices and Disparities in Carbon Emissions.

Environ Sci Technol

Department of Civil and Mineral Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada.

Published: June 2023

The promotion of sustainable mobility choices is a crucial element of transport decarbonization. It requires a fundamental understanding of the choices available to urban dwellers and of the equity and justice implications of green mobility solutions. In this study, we quantified personal mobility-related greenhouse gas (GHG) emissions in the Greater Toronto and Hamilton Area (GTHA) and their associations with various land use, built environment, and socioeconomic factors. Our study captured personal, household, and neighborhood-level characteristics that are related to high emissions and disparities in emissions across the study region. We observed that the top 30% of emitters generated 70% of all transportation GHG emissions. Household income, family size, and vehicle ownership were associated with increased mobility emissions, while increased population density was associated with lower emissions. The percentage of visible minorities in a neighborhood was associated with lower emissions, but this effect was small. We further contrasted the spatial distribution of traffic-related air pollution with mobility GHG emissions. The results suggest that individuals who emit less GHG live in areas with higher air pollution. A computer vision-based model was used to predict GHG emissions from aerial images of neighborhoods, demonstrating that areas with high land use mixture were linked to a lower generation of mobility-based GHG emissions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c06993DOI Listing

Publication Analysis

Top Keywords

ghg emissions
20
emissions
11
mobility choices
8
associated lower
8
lower emissions
8
air pollution
8
ghg
6
personal mobility
4
choices disparities
4
disparities carbon
4

Similar Publications

The climate impact of data centers is expected to increase due to rising demand for information and communication technology services. At the same time, the European Union aims for climate neutral data centers by 2030. To map potential developments of emissions associated with data centers to the year 2030, we develop a generic data center greenhouse gas (GHG) inventory in accordance with the GHG protocol.

View Article and Find Full Text PDF

Healthcare is a surprisingly large contributor to climate change, responsible for a significant quantity of global Greenhouse Gas (GHG) emissions. Global commitments to achieve "net zero" health systems, including by the federal government in Canada, suggest a growing need to understand and mobilize capacity for GHG emissions estimation across Canada's health sector. Our analysis highlights efforts by public sector healthcare organizations in Canada to estimate an increasingly broad scope of GHG emissions, building on longstanding efforts to report or reduce energy-related emissions from facilities.

View Article and Find Full Text PDF

In 2022, the European Union put forward the REPowerEU plan in response to Russia's invasion of Ukraine, aiming at enhancing short-term energy security by diversifying imports and reducing natural gas demand while accelerating the deployment of renewable alternatives in the long term. Here, we quantify the life cycle environmental impacts of both REPowerEU's short-term measures, including the controversial extended coal-fired power plant operations, and how the first year of the crisis was managed in practice. We find that the policy measures' impact on greenhouse gas (GHG) emissions would be negligible, although they could have detrimental effects on other environmental categories.

View Article and Find Full Text PDF

Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.

View Article and Find Full Text PDF

Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!