Background: Pemphigus vulgaris (PV) is a potentially fatal autoimmune bullous disease primarily caused by acantholysis of keratinocytes attributed to pathogenic desmoglein-3 (Dsg3) autoantibodies. Interleukin-37 (IL-37) reportedly plays important roles in a variety of autoimmune diseases, but its role in PV is not clear.
Objectives: To investigate whether IL-37 plays a role in the occurrence and progression of PV.
Methods: HaCaT keratinocytes were stimulated with anti-Dsg3 antibody to establish an in vitro PV model, which was defined as anti-Dsg3 group. Cells incubated with medium without anti-Dsg3 treatment were used as control. IL-37 was cultured with these cells infected with or without lentiviral vector shRNA-Caveolin-1 (sh-Cav-1-LV). Cell dissociation assay and immunocytofluorescence were performed to assess keratinocyte dissociation, keratin retraction and Dsg3 endocytosis. Real-time PCR was used to detect the mRNA level of Cav-1, and western blot was used to determine the protein expression of Cav-1, Dsg3, STAT3 and phosphorylated-STAT3 (p-STAT3).
Results: The anti-Dsg3 group showed more cell debris, increased keratin retraction, increased Dsg3 endocytosis, reduced Cav-1 expression and co-localization than the control group, while IL-37 treatment neutralized all of these changes. Interestingly, Cav-1 knockdown supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization. The protein expression of p-STAT3 was increased in keratinocytes of the PV model but decreased by IL-37. Re-activation of the STAT3 pathway by colivelin supressed the inhibitory effect of IL-37 on keratinocyte dissociation and Dsg3 internalization, along with upregulation of Cav-1 and Dsg3.
Conclusions: IL-37 inhibited keratinocyte dissociation and Dsg3 endocytosis in an in vitro PV model through the upregulating Cav-1 and inhibiting STAT3 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jdv.19239 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Japan; StemRIM Inc., Ibaraki, Osaka, Japan. Electronic address:
The skin is primarily composed of keratinocytes and forms an effective barrier between the organism and external environment. Neonatal skin analysis is essential for understanding developmental processes and rare skin diseases. However, efficient single-cell dissociation methods for the neonatal mouse epidermis remain underexplored.
View Article and Find Full Text PDFPigment Cell Melanoma Res
January 2025
Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Isolating high-quality viable single cells from mouse tail skin, a well-established model for studying skin cells and melanoma pathogenesis, is challenging due to the presence of dense connective tissue and hair follicles. Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying skin cell heterogeneity. However, the lack of a robust protocol for the efficient generation of highly viable single-cell suspension from mouse tail skin has limited its application for studying melanocyte-interacting cells and characterizing the melanocyte niche.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824.
Pemphigus vulgaris (PV) is a blistering autoimmune disease that affects the skin and mucous membranes. The precise mechanisms by which PV antibodies induce a complete loss of cohesion of keratinocytes are not fully understood. But it is accepted that the process starts with antibody binding to desmosomal targets which leads to its disassembly and subsequent structural changes to cell-cell adhesions.
View Article and Find Full Text PDFAllergol Select
October 2024
Center for Child and Adolescent Health, Helios Hospital Krefeld, Academic Hospital of RWTH Aachen, Krefeld.
Stem Cell Res Ther
September 2024
Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, Fujian, P.R. China.
Background: Human epithelium-derived stem cells and induced pluripotent stem cells (hiPSCs) possess the capability to support tooth formation and differentiate into functional enamel-secreting ameloblasts, making them promising epithelial-component substitutes for future human tooth regeneration. However, current tissue recombination approaches are not only technically challenging, requiring precise induction procedures and sophisticated microsurgery, but also exhibit low success rates in achieving tooth formation and ameloblastic differentiation.
Methods: Suspended human keratinocyte stem cells (hKSCs) or cells from three hiPSC lines were directly mixed with dissociated embryonic mouse dental mesenchymal cells (mDMCs) that possess odontogenic potential in different proportions and reaggregated them to construct bioengineered tooth germs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!