Deep learning has been used to reconstruct super-resolution structured illumination microscopy (SR-SIM) images with wide-field or fewer raw images, effectively reducing photobleaching and phototoxicity. However, the dependability of new structures or sample observation is still questioned using these methods. Here, we propose a dynamic SIM imaging strategy: the full raw images are recorded at the beginning to reconstruct the SR image as a keyframe, then only wide-field images are recorded. A deep-learning-based reconstruction algorithm, named KFA-RET, is developed to reconstruct the rest of the SR images for the whole dynamic process. With the structure at the keyframe as a reference and the temporal continuity of biological structures, KFA-RET greatly enhances the quality of reconstructed SR images while reducing photobleaching and phototoxicity. Moreover, KFA-RET has a strong transfer capability for observing new structures that were not included during network training.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.491899 | DOI Listing |
PLoS One
January 2025
NCCA, Bournemouth University, Poole, United Kingdom.
Medical volume data are rapidly increasing, growing from gigabytes to petabytes, which presents significant challenges in organisation, storage, transmission, manipulation, and rendering. To address the challenges, we propose an end-to-end architecture for data compression, leveraging advanced deep learning technologies. This architecture consists of three key modules: downsampling, implicit neural representation (INR), and super-resolution (SR).
View Article and Find Full Text PDFSci Rep
December 2024
Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27599, USA.
A long-standing goal of neuroimaging is the non-invasive volumetric assessment of whole brain function and structure at high spatial and temporal resolutions. Functional ultrasound (fUS) and ultrasound localization microscopy (ULM) are rapidly emerging techniques that promise to bring advanced brain imaging and therapy to the clinic with the safety and low-cost advantages associated with ultrasound. fUS has been used to study cerebral hemodynamics at high temporal resolutions while ULM has been used to study cerebral microvascular structure at high spatial resolutions.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.
Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.
View Article and Find Full Text PDFAutophagy
January 2025
Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation.
View Article and Find Full Text PDFCell
December 2024
Department of Immunology, UConn Health School of Medicine, 263 Farmington Avenue, Farmington, CT 06030, USA. Electronic address:
Pyroptosis mediated by gasdermins (GSDMs) plays crucial roles in infection and inflammation. Pyroptosis triggers the release of inflammatory molecules, including damage-associated molecular patterns (DAMPs). However, the consequences of pyroptosis-especially beyond interleukin (IL)-1 cytokines and DAMPs-that govern inflammation are poorly defined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!