A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Efficient and Private ECG Classification System Using Split and Semi-Supervised Learning. | LitMetric

Electrocardiography (ECG) is a standard diagnostic tool for evaluating the overall heart's electrical activity and is vital for detecting many cardiovascular diseases. Classifying ECG recordings using deep neural networks has been investigated in literature and has shown very good performance. However, this performance assumes that the training data is centralized, which is often not the case in real-life scenarios, where data resides in multiple places and only a small portion of it is labeled. Therefore, in this work, we propose an ECG classification system that focuses on preserving data privacy and enhancing overall system efficiency. We analyzed the complexity of previously proposed deep learning-based models and showed that the temporal convolutional network-based models (TCN) were the most efficient. Then, we built on the TCN models a modified split-learning (SL) system that achieves the same classification performance as the basic SL but reduces the communication overhead between the server and the client by 71.7% as well as reducing the computations at the client by 46.5% compared to the original SL system based on the TCN network. Finally, we implement semi-supervised learning in our system to enhance its classification performance by 9.1%-15.7%, when the training data consists only of 10% labeled data. We have tested our proposed system on a test IoT setup and it achieved satisfactory classification accuracy while being private and energy efficient for green-AI applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3281977DOI Listing

Publication Analysis

Top Keywords

ecg classification
8
classification system
8
semi-supervised learning
8
training data
8
classification performance
8
system
7
classification
5
data
5
efficient private
4
ecg
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!