A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biophysical Properties of the Fibril Structure of the Toxic Conformer of Amyloid-β42: Characterization by Atomic Force Microscopy in Liquid and Molecular Docking. | LitMetric

Alzheimer's disease is associated with the aggregation of the misfolded neuronal peptide, amyloid-β42 (Aβ42). Evidence has suggested that several reasons are responsible for the toxicity caused by the aggregation of Aβ42, including the conformational restriction of Aβ42. In this study, one of the toxic conformers of Aβ42, which contains a Glu-to-Pro substitution (E22P-Aβ42), was explored using atomic force microscopy and molecular docking to study the aggregation dynamics. We proposed a systematic model of fibril formation to better understand the molecular basis of conformational transitions in the Aβ42 species. Our results demonstrated the formation of amorphous aggregates in E22P-Aβ42 that are stem-based, network-like structures, while the formation of mature fibrils occurred in the less toxic conformer of Aβ42, E22-Aβ42, that are sphere-like flexible structures. A comparison was made between the biophysical properties of E22P-Aβ42 and E22-Aβ42 that revealed that E22P-Aβ42 had greater stiffness, dihedral angle, number of β sheets involved, and elasticity, compared with E22-Aβ42. These findings will have considerable implications toward our understanding of the structural basis of the toxicity caused by conformational diversity in Aβ42 species.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c06460DOI Listing

Publication Analysis

Top Keywords

biophysical properties
8
toxic conformer
8
atomic force
8
force microscopy
8
molecular docking
8
toxicity caused
8
aβ42 species
8
aβ42
7
properties fibril
4
fibril structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!