AI Article Synopsis

  • * Research using animal models shows that these NETs are early triggers for the inflammatory processes seen in gum disease, leading to increased interleukin-17 (IL-17) production and deterioration of bone structure.
  • * Human studies confirm that severe periodontitis patients have higher levels of NET complexes and extracellular histones in their blood and affected tissues, suggesting a cycle where NETs amplify inflammatory responses in this common dental condition.

Article Abstract

Neutrophil infiltration is a hallmark of periodontitis, a prevalent oral inflammatory condition in which Th17-driven mucosal inflammation leads to destruction of tooth-supporting bone. Herein, we document that neutrophil extracellular traps (NETs) are early triggers of pathogenic inflammation in periodontitis. In an established animal model, we demonstrate that neutrophils infiltrate the gingival oral mucosa at early time points after disease induction and expel NETs to trigger mucosal inflammation and bone destruction in vivo. Investigating mechanisms by which NETs drive inflammatory bone loss, we find that extracellular histones, a major component of NETs, trigger upregulation of IL-17/Th17 responses, and bone destruction. Importantly, human findings corroborate our experimental work. We document significantly increased levels of NET complexes and extracellular histones bearing classic NET-associated posttranslational modifications, in blood and local lesions of severe periodontitis patients, in the absence of confounding disease. Our findings suggest a feed-forward loop in which NETs trigger IL-17 immunity to promote immunopathology in a prevalent human inflammatory disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236943PMC
http://dx.doi.org/10.1084/jem.20221751DOI Listing

Publication Analysis

Top Keywords

extracellular histones
12
nets trigger
12
neutrophil extracellular
8
extracellular traps
8
inflammation periodontitis
8
mucosal inflammation
8
bone destruction
8
nets
5
extracellular
4
traps extracellular
4

Similar Publications

Inhibition of HDAC6 elicits anticancer effects on head and neck cancer cells through Sp1/SOD3/MKP1 signaling axis to downregulate ERK phosphorylation.

Cell Signal

January 2025

Institute of Medical Science, Ajou University School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea; Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Gyeonggi 16499, Republic of Korea. Electronic address:

Oxidative stress caused by reactive oxygen species (ROS) and superoxides is linked to various cancer-related biological events. Extracellular superoxide dismutase (SOD3), an antioxidant enzyme that removes superoxides, contributes to redox homeostasis and has the potential to regulate tumorigenesis. Histone deacetylase 6 (HDAC6), a major HDAC isoform responsible for mediating the deacetylation of non-histone protein substrates, also plays a role in cancer progression.

View Article and Find Full Text PDF

Regulation of Glutamate Transporter Type 1 by TSA and the Antiepileptic Mechanism of TSA.

Neurochem Res

January 2025

Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.

Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathogenesis is not fully understood to date. One of the suggested mechanisms for its development is NETosis, which involves the release of a specific network consisting of chromatin, proteins, and enzymes from neutrophils, stimulating the immune system. One of its markers is citrullinated histone H3 (H3Cit).

View Article and Find Full Text PDF

Background: Hallmark pathologies of Alzheimer's Disease (AD) include the accumulation of both extracellular amyloid and intracellular tau proteins. While a significant body of knowledge exists surrounding the role of the protein aggregates in the context of AD, research supporting these as targets for therapeutic development have yielded inconsistent findings. One significant barrier is the inability to restore cognitive function despite the successful clearance of these proteins.

View Article and Find Full Text PDF

INCREASED CITRULLINATED HISTONE H3 LEVELS AND ACCELERATED THROMBIN KINETICS IN TRAUMA PATIENTS WHO DEVELOP VENOUS THROMBOEMBOLISM.

Shock

December 2024

Division of Trauma, Critical Care, and General Surgery, Department of Surgery, Mayo Clinic, 200 1st St. SW, Rochester, MN, United States 55905.

Background: Neutrophil extracellular traps (NETs), and its formation and release, known as NETosis, may play a role in the initiation of thrombin generation (TG) in trauma. The objective of this study was to assess whether trauma patients, who develop symptomatic venous thromboembolism (VTE), have increased levels of plasma citrullinated histone H3 (CitH3) and accelerated TG kinetics.

Methods: Patients presenting to a Level I Trauma Center as trauma activations had samples collected within 12 hours of time of injury (TOI), alongside healthy volunteers (HV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!