Background: Pre-clinical development and in-human trials of 'off-the-shelf' immune effector cell therapy (IECT) are burgeoning. IECT offers many potential advantages over autologous products. The relevant HLA matching criteria vary from product to product and depend on the strategies employed to reduce the risk of GvHD or to improve allo-IEC persistence, as warranted by different clinical indications, disease kinetics, on-target/off-tumor effects, and therapeutic cell type (T cell subtype, NK, etc.).

Objective: The optimal choice of candidate donors to maximize target patient population coverage and minimize cost and redundant effort in creating off-the-shelf IECT product banks is still an open problem. We propose here a solution to this problem, and test whether it would be more expensive to recruit additional donors or to prevent class I or class II HLA expression through gene editing.

Study Design: We developed an optimal coverage problem, combined with a graph-based algorithm to solve the donor selection problem under different, clinically plausible scenarios (having different HLA matching priorities). We then compared the efficiency of different optimization algorithms - a greedy solution, a linear programming (LP) solution, and integer linear programming (ILP) -- as well as random donor selection (average of 5 random trials) to show that an optimization can be performed at the entire population level.

Results: The average additional population coverage per donor decrease with the number of donors, and varies with the scenario. The Greedy, LP and ILP algorithms consistently achieve the optimal coverage with far fewer donors than the random choice. In all cases, the number of randomly-selected donors required to achieve a desired coverage increases with increasing population. However, when optimal donors are selected, the number of donors required may counter-intuitively decrease with increasing population size. When comparing recruiting more donors vs gene editing, the latter was generally more expensive. When choosing donors and patients from different populations, the number of random donors required drastically increases, while the number of optimal donors does not change. Random donors fail to cover populations different from their original populations, while a small number of optimal donors from one population can cover a different population.

Discussion: Graph-based coverage optimization algorithms can flexibly handle various HLA matching criteria and accommodate additional information such as KIR genotype, when such information becomes routinely available. These algorithms offer a more efficient way to develop off-the-shelf IECT product banks compared to random donor selection and offer some possibility of improved transparency and standardization in product design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227669PMC
http://dx.doi.org/10.3389/fimmu.2023.1069749DOI Listing

Publication Analysis

Top Keywords

donors
13
hla matching
12
donor selection
12
donors required
12
optimal donors
12
graph-based coverage
8
coverage optimization
8
matching criteria
8
population coverage
8
off-the-shelf iect
8

Similar Publications

Background: To describe a case of guttae recurrence in bilateral corneal grafts in a patient with a known diagnosis of Fuchs endothelial dystrophy, more than three decades following penetrating keratoplasty.

Methods: Case Report.

Results: A 79-year-old White woman presented with declining vision, right eye worse than the left.

View Article and Find Full Text PDF

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

The favorable redox properties of ferrocene have led to the extensive development of ferrocene-based systems for several electrochemical applications but have scarcely been explored for electrochromism. Here, we report the synthesis and electrochromic properties of novel π-conjugated ferrocene-dicyanovinylene systems (- and -). Monosubstituted (-) and disubstituted (-) compounds have been developed via Knoevenagel condensation of methyl-dicyanovinyl ferrocenes ( or ) with various aromatic aldehydes.

View Article and Find Full Text PDF

Comparison of the reactivity of sialyl chlorides and bromides based on -acetylneuraminic acid (Neu5Ac) and its deaminated analogue (KDN) in reactions with MeOH and -PrOH without a promoter revealed that the acetoxy group at C-5 in a molecule of a sialic acid glycosyl donor can destabilize the corresponding glycosyl cation making the S1-like reaction pathway unfavorable. A change to the S2-like reaction pathway ensures preferential formation of the α-glycoside.

View Article and Find Full Text PDF

In biological systems, heme-copper oxidase (HCO) enzymes play a crucial role in the oxygen reduction reaction (ORR), where the pivotal O-O bond cleavage of the (heme)Fe-peroxo-Cu intermediate is facilitated by active-site (peroxo core) hydrogen bonding followed by proton-coupled electron transfer (PCET) from a nearby (phenolic) tyrosine residue. A useful approach to comprehend the fundamental relationships among H-bonding/proton/H-atom donors and their abilities to induce O-O bond homolysis involves the investigation of synthetic, bioinspired model systems where the exogenous substrate properties (such as p and bond dissociation energy (BDE)) can be systematically altered. This report details the reactivity of a heme-peroxo-copper HCO model complex (LS-4DCHIm) toward a series of substituted catechol substrates that span a range of p and O-H bond BDE values, exhibiting different reaction mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!