Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Long non-coding RNAs (lncRNAs), which are generally less functionally characterized or less annotated, evolve more rapidly than mRNAs and substantially possess fewer sequence conservation patterns than protein-coding genes across divergent species. People assume that the functional inference could be conducted on the evolutionarily conserved long non-coding RNAs as they are most likely to be functional. In the past decades, substantial progress has been made in discussions on the evolutionary conservation of non-coding genomic regions from multiple perspectives. However, understanding their conservation and the functions associated with sequence conservation in relation to further corresponding phenotypic variability or disorders still remains incomplete. Accordingly, we determined a highly conserved region (HCR) to verify the sequence conservation among long non-coding RNAs and systematically profiled homologous long non-coding RNA clusters in humans and mice based on the detection of highly conserved regions. Moreover, according to homolog clustering, we explored the potential function inference via highly conserved regions on representative long non-coding RNAs. On lncRNA we investigated the potential functional competence between and lncRNA by recruiting miRNA-29a, regulating the downstream target genes. In addition, on lncRNA we examined the interaction relationship between and SND1. This interaction or association may be perturbed during the progression of glioma. In addition, we have constructed a website with user-friendly web interfaces for searching, analyzing, and downloading to present the homologous clusters of humans and mice. Collectively, homolog clustering via the highly conserved region definition and detection on long non-coding RNAs, as well as the functional explorations on representative sequences in our research, would provide new evidence for the potential function of long non-coding RNAs. Our results on the remarkable roles of long non-coding RNAs would presumably provide a new theoretical basis and candidate diagnostic indicators for tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10229068 | PMC |
http://dx.doi.org/10.3389/fgene.2023.1177259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!