All-inorganic halide double perovskites (HDPs) attract significant attention in the field of perovskite solar cells (PSCs) and light-emitting diodes. In this work, we present a first-principles study on structural, elastic, electronic and optical properties of all-inorganic HDPs CsAgBX (B = In, Sb; X = F, Cl, Br, I), aiming at finding the possibility of using them as photoabsorbers for PSCs. Confirming that the cubic perovskite structure can be formed safely thanks to the proper geometric factors, we find that the lattice constants are gradually increased on increasing the atomic number of the halogen atom from F to I, indicating the weakening of Ag-X and B-X interactions. Our calculations reveal that all the perovskite compounds are mechanically stable due to their elastic constants satisfying the stability criteria, whereas only the Cl-based compounds are dynamically stable in the cubic phase by observing their phonon dispersions without soft modes. The electronic band structures are calculated with the Heyd-Scuseria-Ernzerhof hybrid functional, demonstrating that the In (Sb)-based HDPs show direct (indirect) transition of electrons and the band gaps are decreased from 4.94 to 0.06 eV on going from X = F to I. Finally, we investigate the macroscopic dielectric functions, photo-absorption coefficients, reflectivity and exciton properties, predicting that the exciton binding strength becomes weaker on going from F to I.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227528PMC
http://dx.doi.org/10.1039/d3ra02566gDOI Listing

Publication Analysis

Top Keywords

first-principles study
8
study structural
8
electronic optical
8
optical properties
8
halide double
8
structural electronic
4
properties halide
4
perovskite
4
double perovskite
4
perovskite csagbx
4

Similar Publications

Effect of the TiCT (T = O, OH, and H) Functionalization on the Formation of (TiO)/TiCT Composites.

J Phys Chem C Nanomater Interfaces

January 2025

Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.

First-principles density functional theory calculations are carried out on the (TiO) cluster supported on the TiCT (0001) surface with different chemical terminations, , -H, -O, and -OH, to study the interaction and understand the TiCT functionalization effect on the formation of (TiO)/TiCT composites. Results show an exothermic interaction for all cases, whose strength is driven by the surface termination, promoting weaker bonds when the MXene is functionalized with H atoms. For TiCH and TiC(OH) MXenes, the interaction is accompanied by a charge transfer towards the titania cluster.

View Article and Find Full Text PDF

Role of A-Site Cation Hydrogen Bonds in Hybrid Organic-Inorganic Perovskites: A Theoretical Insight.

J Phys Chem Lett

January 2025

MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.

Hybrid organic-inorganic halide perovskites (HOIPs) have garnered a significant amount of attention due to their exceptional photoelectric conversion efficiency. However, they still face considerable challenges in large-scale applications, primarily due to their instability. One key factor influencing this instability is the lattice softness attributed to the A-site cations.

View Article and Find Full Text PDF

Lattice defect engineering advances n-type PbSe thermoelectrics.

Nat Commun

January 2025

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.

View Article and Find Full Text PDF

Nonlinear memristive computational spectrometer.

Light Sci Appl

January 2025

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai, 200083, China.

In the domain of spectroscopy, miniaturization efforts often face significant challenges, particularly in achieving high spectral resolution and precise construction. Here, we introduce a computational spectrometer powered by a nonlinear photonic memristor with a WSe homojunction. This approach overcomes traditional limitations, such as constrained Fermi level tunability, persistent dark current, and limited photoresponse dimensionality through dynamic energy band modulation driven by palladium (Pd) ion migration.

View Article and Find Full Text PDF

Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional (2D) materials. Numerous theoretical and experimental studies have significantly contributed to analysing the properties of transition metal dichalcogenides (TMDs), known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe2/MoSe2 and MoSe2/WSe2/MoSe2 vdW heterostructures using first-principles based density functional theory calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!