Diazocines are azobenzene derived macrocyclic photoswitches with well resolved photostationary states for the ()- and ()-isomers, which improves their addressability by light. In this work, effective procedures for the stannylation and borylation of diazocines in different positions are reported. Their use in Stille cross-coupling and Suzuki cross-coupling reactions with organic bromides is demonstrated in yields of 47-94% (Stille cross-coupling) and 0-95% (Suzuki cross-coupling), respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10227463 | PMC |
http://dx.doi.org/10.1039/d3ra02988c | DOI Listing |
Nat Commun
January 2025
Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, P. R. China.
Metal-centered chirality has been recognized for over one century, and stereogenic-at-metal complexes where chirality is exclusively attributed to the metal center due to the specific coordination pattern of achiral ligands around the metal ion, has been broadly utilized in diverse areas of natural science. However, synthesis of these molecules remains constrained. Notably, while asymmetric catalysis has played a crucial role in the production of optically active organic molecules, its application to stereogenic-at-metal complexes is less straightforward.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
Mechanofluorochromic (MFC) materials are emerging as a versatile candidate for optoelectronic and biomedical applications. In the present work, we designed and synthesized four MFC materials, namely BT-PTZ-1, BT-PTZ-2, BT-PTZO-1, and BT-PTZO-2, using Suzuki cross-coupling reaction. These materials possess benzothiazole (BT) as an acceptor moiety and different donors, including phenothiazine (PTZ) and triphenylamine (TPA), with variations in their spacer units.
View Article and Find Full Text PDFInd Eng Chem Res
January 2025
Department of Chemistry, Physics, and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States.
An efficient Suzuki cross-coupling reaction under continuous flow conditions was developed utilizing an immobilized solid supported catalyst consisting of bimetallic nickel-palladium nanoparticles (Ni-Pd/MWCNTs). In this process, the reactants can be continuously pumped into a catalyst bed at a high flow rate of 0.6 mL/min and the temperature of 130 °C while the Suzuki products are recovered in high steady-state yields for prolonged continuous processing.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.
Multipalladium clusters possess peculiar structures and synergistic effects for reactivity and selectivity. Herein, -symmetric tripalladium clusters (, 0.5 mol %) afford C-regioselective SMCC of 2,4-dibromopyridine with phenylboronic acids or pinacol esters (C:C up to 98:1), in contrast to Pd(OAc) in ligand-free conditions.
View Article and Find Full Text PDFChemistry
January 2025
Department of Chemistry, University of Victoria, 3800 Finnerty Rd., Victoria, BC V8P 5 C2, Canada.
We report the synthesis, characterization, and catalytic applications of N,N'-diaryl diazabutadiene (DAB) Ni(0) complexes stabilized by alkene ligands. These complexes are soluble and stable in several organic solvents, making them ideal candidates for in situ catalyst formation during high-throughput experimentation (HTE). We used HTE to evaluate these Ni(0) precatalysts in a variety of Suzuki and C-N coupling reactions, and they were found to have equal or better performance than the still-standard Ni(0) source, Ni(COD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!