Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Uncovering the heterogeneity in the disease progression of Alzheimer's is a key factor to disease understanding and treatment development, so that interventions can be tailored to target the subgroups that will benefit most from the treatment, which is an important goal of precision medicine. However, in practice, one top methodological challenge hindering the heterogeneity investigation is that the true subgroup membership of each individual is often unknown. In this article, we aim to identify latent subgroups of individuals who share a common disorder progress over time, to predict latent subgroup memberships, and to estimate and infer the heterogeneous trajectories among the subgroups. To achieve these goals, we apply a concave fusion learning method to conduct subgroup analysis for longitudinal trajectories of the Alzheimer's disease data. The heterogeneous trajectories are represented by subject-specific unknown functions which are approximated by B-splines. The concave fusion method can simultaneously estimate the spline coefficients and merge them together for the subjects belonging to the same subgroup to automatically identify subgroups and recover the heterogeneous trajectories. The resulting estimator of the disease trajectory of each subgroup is supported by an asymptotic distribution. It provides a sound theoretical basis for further conducting statistical inference in subgroup analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228330 | PMC |
http://dx.doi.org/10.1080/02664763.2022.2036953 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!