The application of nonlinear optical effects in optoelectronic devices is still scarce because the irradiance threshold necessary to induce a specific effect is very high. In this context, knowing the frequency-resolved first order molecular hyperpolarizability (β) is essential to identifying regions where this response is intense enough to allow for applications in commercial devices. Thus, herein, we have determined the β spectral dependence of five new push-pull cinnamylidene acetophenone derivatives using femtosecond laser-induced Hyper-Rayleigh Scattering (HRS). A considerable increase in β values was observed in molecules. We found remarkable β values in regions near the two-photon resonance, which are mediated by electron withdrawing and donating groups. This effect was mapped using wavelength-tunable femtosecond Z-scan technique. Furthermore, it was modeled in light of the sum-over-states approach for the second- and third-order nonlinearities. Finally, our outcomes suggest a strategy to obtain large β values mediated by the 2PA transition.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0151622DOI Listing

Publication Analysis

Top Keywords

derivatives femtosecond
8
observation two-photon
4
two-photon transition
4
transition enhanced
4
enhanced hyperpolarizability
4
hyperpolarizability spectra
4
spectra cinnamaldehyde
4
cinnamaldehyde derivatives
4
femtosecond regime
4
regime study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!