Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Acute hyperglycemia is a risk factor for developing acute kidney injury and poor renal outcome in critically ill patients, whereby the role of renal vasculature remains unclear. We hypothesize that hyperglycemia-associated hyperosmolarity facilitates vasodilation through Piezo1-mediated eNOS (endothelial NO synthase) activation.
Methods: Vasoreactivity was analyzed using wire myography in isolated mouse mesenteric arteries and renal interlobar, and using microvascular perfusion in renal afferent arterioles and efferent arterioles, and vasa recta. Immunofluorescence and Western blot were used for molecular analyses of isolated mouse blood vessels and human umbilical vein endothelial cells.
Results: Pretreatment with hyperglycemia (44 mmol/L glucose; 4 hours) increased acetylcholine-induced relaxation in interlobar arteries and mesenteric arteries, which was prevented by eNOS inhibition using Nω-nitro-L-arginine methylester hydrochloride. Hyperosmotic mannitol solution had a similar effect. Hyperglycemia induced an immediate, Nω-nitro-L-arginine methylester hydrochloride-inhibitable dilation in afferent arterioles, efferent arterioles, and vasa recta, whereby stronger dilation in afferent arterioles compared to efferent arterioles. Hyperglycemia also increased glomerular filtration rate in mice. In human umbilical vein endothelial cells, hyperglycemia, and the Piezo1 activator Yoda-1 increased levels of Piezo1 protein, p-CaMKII (phosphorylated Ca/Calmodulin-dependent protein kinase type II), Akt (protein kinase B), and p-eNOS (phosphorylated eNOS). The hyperglycemia effect could be prevented by inhibiting Piezo1 using GsMTx4 ( mechanotoxin 4) and CaMKII using KN93 (N-[2-[[[3-(4-Chlorophenyl)-2-propenyl]-methylamino]-methyl]-phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide). Furthermore, in arteries and microvessels, inhibition of Piezo1 using GsMTx4 prevented the hyperglycemia -effect, while Yoda-1 caused relaxation and dilation, respectively.
Conclusions: Results reveal that Piezo1 mediates renal vasodilation induced by hyperosmolarity in acute hyperglycemia. This mechanism may contribute to the pathogenesis of renal damage by acute hyperglycemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.122.20767 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!