Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein -glycosylation is one of the most diverse post-translational modifications. A critical step in the analysis of -glycomes is the release of glycans from glycoconjugates. Current release methods rely mainly on β-elimination, which can result in peeling reactions and loss of base-sensitive functionalities leading to misidentification of glycans. To address this challenge, well-defined synthetic glycopeptides were used to establish a robust workflow for the oxidative release of -glycans suitable for glycomics. Treatment of -glycopeptides with neutralized hypochlorite resulted in the selective formation of lactic/glycolic acid glycosides, thereby retaining unique information of the parent amino acid (serine/threonine) that is lost by β-elimination. It locks the glycan in a closed ring configuration, thereby preventing peeling, and furthermore, the carboxylate of the anomeric tag promotes ionization in negative ion mode mass spectrometry, thereby increasing signal intensities. Labile modifications such as sialic acids, sulfates, and acetyl esters are maintained during the release procedure. The promise of the approach was demonstrated by the analysis of glycans from bovine submaxillary mucin, which identified mono- and di-acetylated sialoglycans as well as previously undetected tri--acetylated and sulfated glycans. The use of well-defined glycopeptide standards made it also possible to identify reaction intermediates, which in turn allowed us to postulate a reaction mechanism for oxidative -glycan release under neutral conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10267892 | PMC |
http://dx.doi.org/10.1021/acs.analchem.3c00127 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!