Group B Streptococcus (GBS) is a Gram-positive bacterium commonly found in the genitourinary tract and is also a leading cause of neonatal sepsis and pneumonia. Despite the current antibiotic prophylaxis (IAP), the disease burdens of late-onset disease in newborns and non-pregnant adult infections are increasing. Recently, inactivation of the pathogens via gamma radiation has been proven to eliminate their replication ability but cause less damage to the antigenicity of the key epitopes. In this study, the non-capsule GBS strain was inactivated via radiation (Rad-GBS) or formalin (Che-GBS), and we further determined its immunogenicity and protective efficacy as vaccines. Notably, Rad-GBS was more immunogenic and gave rise to higher expression of costimulatory molecules in BMDCs in comparison with Che-GBS. Flow cytometric analysis revealed that Rad-GBS induced a stronger CD4 IFN-γ and CD4IL-17A population in mice. The protective efficacy was measured through challenge with the highly virulent strain CNCTC 10/84, and the adoptive transfer results further showed that the protective role is reversed by functionally neutralizing antibodies and T cells. Finally, cross-protection against challenges with prevalent serotypes of GBS was induced by Rad-GBS. The higher opsonophagocytic killing activity of sera against multiple serotypes was determined in sera from mice immunized with Rad-GBS. Overall, our results showed that the inactivated whole-cell encapsulated GBS could be an alternative strategy for universal vaccine development against invasive GBS infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961543 | PMC |
http://dx.doi.org/10.3390/ph16020321 | DOI Listing |
Cell Biochem Funct
January 2025
Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).
View Article and Find Full Text PDFEur J Clin Microbiol Infect Dis
January 2025
Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China.
Objectives: Neonatal sepsis is one of the causes of neonatal mortality and bacterial resistance to antibiotics is one of the challenges facing NICU. The aim of this study was to provide a basis for empirical antibiotic selection by comprehensively searching Chinese and non-Chinese databases for studies related to neonatal sepsis pathogenesis conducted in China and synthesizing all the results of the studies conducted in hospitals in China during the period under study METHODS: In this study, we conducted extensive searches of Pubmed, Web of Science, Cochrane, China Biology Medicine disc (SinoMed), China National Knowledge Infrastructure (CNKI) and Wanfang Data. We screened studies published from 2014 to 2023 that were conducted in hospitals in mainland China and involved bacterial blood cultures and susceptibility tests in neonates with neonatal sepsis and extracted the data, which were summarized using Stata 18.
View Article and Find Full Text PDFCurr Opin Infect Dis
January 2025
Department of Health Sciences (DISSAL), University of Genoa.
Purpose Of Review: To discuss skin and soft tissue infections (SSTIs) caused by group A Streptococcus (GAS) by focusing on their pathogenesis, clinical manifestations, and management strategies.
Recent Findings: GAS is responsible for a wide range of infections from mild disease to severe fatal invasive infections with high mortality rates. Invasive GAS (iGAS) infections affect both young and old individuals and account for 1.
PeerJ
January 2025
Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
Background: Periodontitis is not always satisfactorily treated with conventional scaling and root planing, and adjunctive use of antibiotics is required in clinical practice. Therefore, it is important for clinicians to understand the diversity and the antibiotic resistance of subgingival microbiota when exposed to different antibiotics.
Materials And Methods: In this study, subgingival plaques were collected from 10 periodontitis patients and 11 periodontally healthy volunteers, and their microbiota response to selective pressure of four antibiotics (amoxicillin, metronidazole, clindamycin, and tetracycline) were evaluated through 16S rRNA gene amplicon and metagenomic sequencing analysis.
Curr Genet
January 2025
Department of Prosthodontics, King George's Medical University, Lucknow, 226003, India.
Dental plaque biofilms are the primary etiologic factor for various chronic oral infectious diseases. In recent years, dental plaque shows enormous potential to know about an individual microbiota. Various microbiome studies of oral cavity from different geographical locations reveals abundance of microbial species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!