The date palm ( L.) is a popular edible fruit consumed all over the world and thought to cure several chronic diseases and afflictions. The profiling of the secondary metabolites of optimized ripe Ajwa date pulp (RADP) extracts is scarce. The aim of this study was to optimize the heat extraction (HE) of ripe Ajwa date pulp using response surface methodology (RSM) and artificial neural network (ANN) modeling to increase its polyphenolic content and antioxidant activity. A central composite design was used to optimize HE to achieve the maximum polyphenolic compounds and antioxidant activity of target responses as a function of ethanol concentration, extraction time, and extraction temperature. From RSM estimates, 75.00% ethanol and 3.7 h (extraction time), and 67 °C (extraction temperature) were the optimum conditions for generating total phenolic content (4.49 ± 1.02 mgGAE/g), total flavonoid content (3.31 ± 0.65 mgCAE/g), 2,2-diphenyl-1-picrylhydrazyl (11.10 ± 0.78 % of inhibition), and cupric-reducing antioxidant capacity (1.43 µM ascorbic acid equivalent). The good performance of the ANN was validated using statistical metrics. Seventy-one secondary metabolites, including thirteen new bioactive chemicals (hebitol II, 1,2-di-(syringoyl)-hexoside, naringin dihydrochalcone, erythron-guaiacylglycerol-β-syringaresinol ether hexoside, erythron-1-(4'--hexoside-3,5-dimethoxyphenyl)-2-syrngaresinoxyl-propane-1,3-diol, 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid, linustatin and 1-deoxynojirimycin galactoside), were detected using high-resolution mass spectroscopy. The results revealed a significant concentration of phytoconstituents, making it an excellent contender for the pharmaceutical and food industries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961821 | PMC |
http://dx.doi.org/10.3390/ph16020319 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, Princeton University, Princeton, NJ 08544.
Chemical communication between marine bacteria and their algal hosts drives population dynamics and ultimately determines the fate of major biogeochemical cycles in the ocean. To gain deeper insights into this small molecule exchange, we screened niche-specific metabolites as potential modulators of the secondary metabolome of the roseobacter, . Metabolomic analysis led to the identification of a group of cryptic lipids that we have termed roseoceramides.
View Article and Find Full Text PDFProtoplasma
January 2025
Botany Unit (SAIF & R), CSIR-CDRI, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
Eclipta prostrata belongs to the Asteraceae family. The plant contains bioactive compounds like wedelolactone (WDL) and demethylwedelolactone (DW). Its transcriptomic information engaged with secondary metabolite biosynthesis is not available.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Department of Tea Science, College of Horticulture Science, South China Agricultural University, Guangzhou, 510642, China.
Integration of resistance indicators, metabolomes, and transcriptomes to elucidate that there is a positive correlation between disease susceptibility and cold tolerance in tea plants. The flavonoid pathway was found to be the major metabolic and transcriptional enrichment pathway. A key domain NB-ARC was identified through joint analysis, along with analysis of key domains within the NB-ARC protein.
View Article and Find Full Text PDFISME J
January 2025
DTU Bioengineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Life Science, South-Central Minzu University, No. 182, Minyuan Road, Hongshan District, Wuhan 430074, China.
Microbiota dysfunction induces intestinal disorders and neurological diseases. Mannuronate oligosaccharides (MAOS), a kind of alginate oligosaccharide (AOS), specifically exert efficacy in shaping gut microbiota and relieving cognitive impairment. However, the key regulatory factors involved, such as the specific strains and metabolites as well as their regulatory mechanisms, remain unclear at present.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!