Inadequate aqueous solubilities of bioactive compounds hinder their ability to be developed for medicinal applications. The potent antioxidant pterostilbene (PTB) is a case in point. The aim of this study was to use a series of modified water-soluble cyclodextrins (CDs), namely, hydroxypropyl β-CD (HPβCD), dimethylated β-CD (DIMEB), randomly methylated β-CD (RAMEB), and sulfobutyl ether β-CD sodium salt (SBECD) to prepare inclusion complexes of PTB via various solid, semi-solid, and solution-based treatments. Putative CD-PTB products generated by solid-state co-grinding, kneading, irradiation with microwaves, and the evaporative treatment of CD-PTB solutions were considered to have potential for future applications. Primary analytical methods for examining CD-PTB products included differential scanning calorimetry and Fourier transform infrared spectroscopy to detect the occurrence of binary complex formation. Phase solubility analysis was used to probe CD-PTB complexation in an aqueous solution. Complexation was evident in both the solid-state and in solution. Complex association constants (K) in an aqueous solution spanned the approximate range of 15,000 to 55,000 M; the values increased with the CDs in the order HPβCD < DIMEB < RAMEB < SBECD. Significant PTB solubility enhancement factors were recorded at 100 mM CD concentrations, the most accurately determined values being in the range 700-fold to 1250-fold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966925PMC
http://dx.doi.org/10.3390/ph16020247DOI Listing

Publication Analysis

Top Keywords

aqueous solution
12
antioxidant pterostilbene
8
cd-ptb products
8
complexation antioxidant
4
pterostilbene derivatized
4
derivatized cyclodextrins
4
cyclodextrins solid
4
solid state
4
aqueous
4
state aqueous
4

Similar Publications

The photoinduced reaction of [Pt(NO)] with pyridine or its derivatives (L) was found to result in the formation of [PtL](NO) salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL](NO) salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)] cationic complex with N was studied by H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)](NO).

View Article and Find Full Text PDF

Hydrogels, three-dimensional polymeric networks capable of absorbing and retaining significant amounts of aqueous solution, offer a promising platform for controlled release of desired compounds. In this study, we explored the effects of urea delivery through galactoxyloglucan-sodium alginate hydrogels on the phenotypic and metabolic responses of , a vital oilseed and vegetable crop. The experiments were conducted with four treatments: control (without hydrogel beads and urea), direct urea supplementation (U), hydrogel beads with urea (HBWU), and hydrogel beads without urea (HBWOU).

View Article and Find Full Text PDF

Boosting the oxygen reduction activity on metal surfaces by fine-tuning interfacial water with midinfrared stimulation.

Innovation (Camb)

January 2025

International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.

View Article and Find Full Text PDF

This paper describes the production and high-current-density hydrogen evolution reaction (HER) performance in the whole pH range (from acidic to basic pH values) of self-supported α-MoB/β-MoB ceramic electrodes, aiming for use in industrial electrocatalytic water splitting. Tape-casting and phase-inversion process, followed by sintering, were employed to synthesize self-supported β-MoB ceramic electrodes, which exhibited well arranged large finger-like pores, providing numerous active sites and channels for electrolyte entry and hydrogen release. The reaction between β-MoB and the sintering aid of MoO produces α-MoB/β-MoB heterojunctions, which significantly improve the electrocatalytic performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!