For the first time, the pharmacokinetic (PK) profile of tryptophanol-derived isoindolinones, previously reported as p53 activators, was investigated. From the metabolites' identification, performed by liquid chromatography coupled to high resolution tandem mass spectrometry (LC-HRMS/MS), followed by their preparation and structural elucidation, it was possible to identify that the indole C2 and C3 are the main target of the cytochrome P450 (CYP)-promoted oxidative metabolism in the tryptophanol-derived isoindolinone scaffold. Based on these findings, to search for novel p53 activators a series of 16 enantiopure tryptophanol-derived isoindolinones substituted with a bromine in indole C2 was prepared, in yields of 62-89%, and their antiproliferative activity evaluated in human colon adenocarcinoma HCT116 cell lines with and without p53. Structural optimization led to the identification of two ()-tryptophanol-derived isoindolinones 3.9-fold and 1.9-fold more active than hit SLMP53-1, respectively. Compounds' metabolic stability evaluation revealed that this substitution led to a metabolic switch, with the impact of Phase I oxidative metabolism being minimized. Through differential scanning fluorimetry (DSF) experiments, the most active compound of the series in cell assays led to an increase in the protein melting temperature () of 10.39 °C, suggesting an effective binding to wild-type p53 core domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967700 | PMC |
http://dx.doi.org/10.3390/ph16020146 | DOI Listing |
Toxicol Res (Camb)
January 2025
Department of Obstetrics and Gynecology, Jinggangshan University Clinical School of Medicine, No. 28 Xueyuan Road, Ji'an, Jiangxi 343000, China.
Ovarian cancer (OC) is a significant cause of cancer-related mortality among women. This study explores the efficacy of L. () extract, known for its phytoestrogenic properties, in treating OC through hormonal and metabolic modulation.
View Article and Find Full Text PDFNuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor regulating cellular redox homeostasis, exhibits a complex role in cancer biology. Genetic mutations in the Kelch-like ECH-associated protein 1 (KEAP1)/NRF2 system, which lead to NRF2 hyperactivation, are found in 20% to 30% of lung cancer cases. This review explores the intricate interplay between NRF2 and key oncogenic pathways in lung cancer, focusing on the interaction of KEAP1/NRF2 system with Kirsten rat sarcoma virus (KRAS), tumor protein P53 (TP53), epidermal growth factor receptor (EGFR), and phosphatidylinositol 3-kinases (PI3K)/AKT signaling.
View Article and Find Full Text PDFHum Cell
January 2025
Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.
Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.
View Article and Find Full Text PDFNat Cell Biol
January 2025
Department of Biochemistry, University of Oxford, Oxford, UK.
Delays in mitosis trigger p53-dependent arrest in G1 of the next cell cycle, thus preventing repeated cycles of chromosome instability and aneuploidy. Here we show that MDM2, the p53 ubiquitin ligase, is a key component of the timer mechanism triggering G1 arrest in response to prolonged mitosis. This timer function arises due to the attenuation of protein synthesis in mitosis.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University Bratislava, SK-83232, Bratislava, Slovakia.
Oxidative stress and apoptosis are highly engaged in development of diabetic nephropathy (DN). In monotherapy, dapagliflozin and pioglitazone positively modulate target organ damage even independently of their hypoglycaemic effect. This study evaluated whether a simultaneous PPARγ activation and SGLT cotransporter inhibition offer superior protection against DN-related oxidative and apoptotic processes in a T1DM rat model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!