From Genomics to Metagenomics in the Era of Recent Sequencing Technologies.

Methods Mol Biol

Leeds Institute of Medical Research, University of Leeds, Leeds General Infirmary, Leeds, UK.

Published: June 2023

Metagenomics, also known as environmental genomics, is the study of the genomic content of a sample of organisms obtained from a common habitat. Metagenomics and other "omics" disciplines have captured the attention of researchers for several decades. The effect of microbes in our body is a relevant concern for health studies. Through sampling the sequences of microbial genomes within a certain environment, metagenomics allows study of the functional metabolic capacity of a community as well as its structure based upon distribution and richness of species. Exponentially increasing number of microbiome literatures illustrate the importance of sequencing techniques which have allowed the expansion of microbial research into areas, including the human gut, antibiotics, enzymes, and more. This chapter illustrates how metagenomics field has evolved with the progress of sequencing technologies.Further, from this chapter, researchers will be able to learn about all current options for sequencing techniques and comparison of their cost and read statistics, which will be helpful for planning their own studies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3072-3_1DOI Listing

Publication Analysis

Top Keywords

sequencing techniques
8
genomics metagenomics
4
metagenomics era
4
sequencing
4
era sequencing
4
sequencing technologies
4
metagenomics
4
technologies metagenomics
4
metagenomics environmental
4
environmental genomics
4

Similar Publications

Genomic sequencing in diverse and underserved pediatric populations: parent perspectives on understanding, uncertainty, psychosocial impact, and personal utility of results.

Genet Med

January 2025

Genomics Ethics, and Translational Research Program, RTI International, Research Triangle Park, NC; Department of Translational and Applied Genomics, Kaiser Permanente Center for Health Research, Portland, OR. Electronic address:

Purpose: Limited evidence evaluates parents' perceptions of their child's clinical genomic sequencing (GS) results, particularly among individuals from medically underserved groups. Five Clinical Sequencing Evidence-Generating Research (CSER) consortium studies performed GS in children with suspected genetic conditions with high proportions of individuals from underserved groups to address this evidence gap.

Methods: Parents completed surveys of perceived understanding, personal utility, and test-related distress after GS result disclosure.

View Article and Find Full Text PDF

Newborn screening for common genetic variants associated with permanent hearing loss: Implementation in Ontario and a review of the first 3 years.

Genet Med

January 2025

Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa. Electronic address:

Purpose: Universal newborn hearing screening (UNHS) programs using audiometric techniques alone are limited in ability to detect non-congenital childhood permanent hearing loss (PHL). In 2019, Ontario launched universal newborn screening (NBS) for PHL risk factors: congenital cytomegalovirus (cCMV) and 22 common variants in GJB2 and SLC26A4. Here we describe our experience with genetic risk factor screening.

View Article and Find Full Text PDF

Spatial transcriptomics (ST) offers enormous potential to decipher the biological and pathological heterogeneity in precious archival cancer tissues. Traditionally, these tissues have rarely been used and only examined at a low throughput, most commonly by histopathological staining. ST adds thousands of times as many molecular features to histopathological images, but critical technical issues and limitations require more assessment of how ST performs on fixed archival tissues.

View Article and Find Full Text PDF

Background: Computed tomography (CT) is the gold standard imaging modality for the assessment of 3D bony morphology but incurs the cost of ionizing radiation exposure. High-resolution 3D magnetic resonance imaging (MRI) with CT-like bone contrast (CLBC) may provide an alternative to CT in allowing complete evaluation of both bony and soft tissue structures with a single MRI examination.

Purpose: To review the technical aspects of an optimized stack-of-stars 3D gradient recalled echo pulse sequence method (3D-Bone) in generating 3D MR images with CLBC, and to present a pictorial review of the utility of 3D-Bone in the clinical assessment of common musculoskeletal conditions.

View Article and Find Full Text PDF

Monocyte-Derived cxcl12 Guides a Directional Migration of Blood Vessels in Zebra Fish.

Arterioscler Thromb Vasc Biol

January 2025

School of Life Science, Nantong Laboratory of Development and Diseases and Co-Innovation Center of Neuroregeneration, Nantong University, China.

Background: Sprouting blood vessels, reaching the aimed location, and establishing the proper connections are vital for building vascular networks. Such biological processes are subject to precise molecular regulation. So far, the mechanistic insights into understanding how blood vessels grow to the correct position are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!