Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MRI is a valuable diagnostic tool to investigate spinal cord (SC) pathology. SC MRI can benefit from the increased signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) at ultra-high fields such as 7 T. However, SC MRI acquisitions with routine Cartesian readouts are prone to image artifacts caused by physiological motion. MRI acquisition techniques with non-Cartesian readouts such as rosette can help reduce motion artifacts. The purpose of this study was to demonstrate the feasibility of high-resolution SC imaging using rosette trajectory with magnetization transfer preparation (MT-prep) and compressed sensing (CS) at 7 T. Five healthy volunteers participated in the study. Images acquired with rosette readouts demonstrated reduced motion artifacts compared to the standard Cartesian readouts. The combination of multi-echo rosette-readout images improved the CNR by approximately 50% between the gray matter (GM) and white matter (WM) compared to single-echo images. MT-prep images showed excellent contrast between the GM and WM with magnetization transfer ratio (MTR) and cerebrospinal fluid normalized MT signal (MTCSF) = 0.12 ± 0.017 and 0.74 ± 0.013, respectively, for the GM; and 0.18 ± 0.011 and 0.58 ± 0.009, respectively, for the WM. Under-sampled acquisition using rosette readout with CS reconstruction demonstrated up to 6 times faster scans with comparable image quality as the fully-sampled acquisition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232418 | PMC |
http://dx.doi.org/10.1038/s41598-023-35853-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!