The inverted pendulum is controlled in this article by using the nonlinear control theory. From classical analytical mechanics, its substructure equation of motion is derived. Because of the inclusion of the restoring forces, the Taylor expansion is employed to facilitate the analysis. An estimated satisfactory periodic solution is obtained with the aid of the modified Homotopy perturbation method. A numerical technique based on the fourth-order Runge-Kutta method is employed to justify the previous solution. On the other hand, a positive position feedback control is developed to dampen the vibrations of an IP system subjected to multi-excitation forces. The multiple time scale perturbation technique of the second order is introduced as a mathematical method to solve a two-degree-of-freedom system that simulates the IP with the PPF at primary and 1:1 internal resonance. The stability of these solutions is checked with the aid of the Routh-Hurwitz criterion. A set of graphs, based on the frequency response equations resulting from the MSPT method, is incorporated. Additionally, a numerical simulation is set up with RK-4 to confirm the overall controlled performance of the studied model. The quality of the solution is confirmed by the match between the approximate solution and the numerical simulation. Numerous other nonlinear systems can be controlled using the provided control method. Illustrations are offered that pertain to implications in design and pedagogy. The linearized stability of IP near the fixed points as well as the phase portraits is depicted for the autonomous and non-autonomous cases. Because of the static stability of the IP, it is found that its instability can be suppressed by the increase of both the generalized force as well as the torsional constant stiffness of the spring. Additionally, the presence of the magnetic field enhances the stability of IP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232474 | PMC |
http://dx.doi.org/10.1038/s41598-023-34918-x | DOI Listing |
PLoS One
January 2025
Department of Mechanical Engineering, Northern Illinois University, DeKalb, Illinois, United States of America.
Professor Richard Klein and his students built a bicycle with a rather interesting feature: no one was able to ride it. A prize was offered. Hundreds of students and cycling enthusiasts attempted it.
View Article and Find Full Text PDFSci Rep
December 2024
Innovative Global Program, Shibaura Institute of Technology, Tokyo, 135-8548, Japan.
This paper presents a novel and comprehensive control framework for the Rotary Inverted Pendulum (RIP), focusing on a hybrid control strategy that addresses the limitations of conventional methods in nonlinear and complex systems. The proposed controller synergistically combines an Optimized Fuzzy Logic Controller (OFLC) with Sliding Mode Control (SMC), leveraging the strengths of both techniques to achieve superior performance. The integration of Particle Swarm Optimization (PSO) into the OFLC significantly enhances its adaptability and precision, while the SMC law provides robust disturbance rejection and system stability.
View Article and Find Full Text PDFExperimental neuroscience techniques are advancing rapidly, with major recent developments in high-density electrophysiology and targeted electrical stimulation. In combination with these techniques, cortical organoids derived from pluripotent stem cells show great promise as models of brain development and function. Although sensory input is vital to neurodevelopment , few studies have explored the effect of meaningful input to neural cultures over time.
View Article and Find Full Text PDFJ Neural Eng
December 2024
Exercise Physiology, Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States of America.
Complex biological systems have evolved to control movement dynamics despite noisy and unpredictable inputs and processing delays that necessitate forward predictions. The staple example in vertebrates is the locomotor control emerging from interactions between multiple systems-from passive dynamics of inverted pendulum governing body motion to coupled neural oscillators that integrate predictive forward and sensory feedback signals. These neural dynamic computations are expressed in the rhythmogenic spinal network known as the central pattern generator (CPG).
View Article and Find Full Text PDFJ Biomech
December 2024
Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States. Electronic address:
While levodopa is the most effective drug for symptom treatment of Parkinson's Disease (PD), its long-term use often leads to side effects such as uncontrolled involuntary movements known as levodopa-induced dyskinesia (LID). LID has been shown to increase postural sway, but the extent to which these hyperkinetic movements alter postural sway strategies has not been explored. We recruited 25 people with idiopathic PD, of which 13 exhibit clinical signs of LID, and 10 healthy older adults.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!