Objective: To investigate the potential mechanisms underlying the migration of endogenous neural stem cells (eNSCs) to the frontal cortex to differentiate into neurons, and to monitor the effect of electroacupuncture (EA) regulation of focal cerebral ischemia (FCI) in rats on the expression of growth arrest-specific protein 7 (Gas7) and nerve growth factor (NGF) in the prefrontal cortex (PFC).
Methods: Randomly, forty-eight male Sprague-Dawley rats were divided into four groups: Normal, Sham operation, Model, and EA. The right middle cerebral artery was embolized utilizing the thread-embolism technique. In the EA group, "Baihui" and "Zusanli" points were treated with electroacupuncture for 30 minutes, once a day, for 21 days. Nissl staining revealed the neuronal morphology of the PFC. Using immunohistochemistry and Western blot, the expression of Gas7 and NGF in the right PFC was observed.
Results: Nissl staining showed clear PFC neurons with centered nuclei and distinct nucleoli in the Normal and Sham groups. In the Model group, the PFC nuclei were distinctively smaller. The neuronal morphology in the EA group resembled that of the Normal group. Results from Western blot and immunohistochemistry were comparable. The expression of Gas7 and NGF in the Sham surgery group did not differ significantly from the Normal group. However, the expression of Gas7 and NGF in the Model group was significantly lower than in the Normal group. The expression of Gas7 and NGF was significantly higher in the EA group than in the Model group.
Conclusions: EA can increase the expressions of Gas7 and NGF in the ischemic prefrontal cortex, which may be one of the mechanisms by which EA promotes the differentiation of eNSCs into neurons in the injured area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.jin2203063 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!