Although the epiglottis plays a vital role in deglutition, histological studies of the epiglottis and surrounding ligaments associated with swallowing dysfunction are limited. Therefore, we performed histological observations to clarify age-related changes in the morphological characteristics of the epiglottis and surrounding structures. Tissue samples comprising the epiglottis and surrounding structures were collected from corpses that were both orally fed and tube-fed during their lifetimes. Following hematoxylin and eosin, Elastica Van Gieson, and immunohistochemical staining procedures, the chondrocytes, connective tissue, and glandular tissue were observed under the epiglottis epithelium, and intervening adipose tissue was observed in the surrounding area. Fatty degeneration of acinar cells was also observed in the glandular tissue, possibly because of aging. Bundles of elastic fibers were present around the vascular wall in the peri-epiglottic ligament, but some were reduced. Furthermore, large amounts of collagen fibers ran toward and through the cartilage, whereas the mesh-like elastic fibers stopped in front of the cartilage. Microfibrils considered to be oxytalan fibers, which are thinner and shorter than elastic fibers, were observed around the vascular wall and in the fiber bundles. Age-related changes included connective tissue fibrosis shown by the large amount of collagen fibers, atrophy of salivary glands, and an accompanying increase in adipose tissue. Regarding stretchability and elasticity, the elastic fibers may have an auxiliary function for laryngeal elevation during deglutition. This suggests that disuse atrophy of the laryngeal organs with or without oral intake might reduce the amount of elastic fiber in older adults.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520849 | PMC |
http://dx.doi.org/10.5115/acb.23.081 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Weldon School of Biomedical Engineering, Purdue University, West Lafayette 47907-2050, Indiana, United States.
Granular hydrogels are injectable and inherently porous biomaterials assembled through the packing of microparticles. These particles typically have a symmetric and spherical shape. However, recent studies have shown that asymmetric particles with high aspect ratios, such as fibers and rods, can significantly improve the mechanics, structure, and cell-guidance ability of granular hydrogels.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China. Electronic address:
The weak cohesive strength of tissue adhesives hinders their practical applications. To overcome this challenge, we develop a green bio-adhesive that balances both cohesion and adhesion, drawing inspiration from the natural adhesion mechanisms of mussels. This bio-adhesive, referred to as OTS, was ingeniously crafted through the co-assembly of multi-surface-charged chitin nanofibers (OAChN) and tannic acid (TA), integrated with silk fibroin (SF), resulting in a material with enhanced cohesive strength and robust adhesive properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, People's Republic of China. Electronic address:
Combining polymer and surfactant in one agent namely polymeric surfactants with both high viscosity and surface activity has become a viable alternative for the traditional enhanced oil recovery (EOR) processes. With the purpose of developing new polymeric surfactants, the biopolymer flooding agent sphingan WL gum was modified by octenyl succinic anhydride (OSA) through the esterification reaction. The effects of molecular weight (MW) of WL and the OSA: WL ratio on the properties of the products were investigated.
View Article and Find Full Text PDFProc Inst Mech Eng H
January 2025
Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, India.
Bone is a highly heterogeneous and anisotropic material with a hierarchical structure. The effect of diaphysis locations and directions of loading on elastic-plastic compressive properties of bovine femoral cortical bone was examined in this study. The impact of location and loading directions on elastic-plastic compressive properties of cortical bone was found to be statistically insignificant in this study.
View Article and Find Full Text PDFDrug Deliv
December 2025
Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!