It is well established that platinum-based drugs, including oxaliplatin (L-OHP) and cisplatin (CDDP), as well as microtubule inhibitors paclitaxel (PTX) and vincristine (VCR), are associated with chemotherapy-induced peripheral neuropathy (CIPN). In this study, we examined and compared the characteristics of neuropathies induced by L-OHP, CDDP, PTX, and VCR to evaluate whether Caenorhabditis elegans (C. elegans) could serve as a model organism for human CIPN. Worms were cultured on nematode growth medium plates, and L1 larvae synchronized by gel filtration were employed. We then performed bioassays and examined motility. In the motility test, exposure was performed for 2, 24, and 48 hr, and time-dependent effects were measured for each exposure time and 24 hr after terminating exposure. Herein, we observed that L-OHP and CDDP exerted concentration-dependent effects above a certain concentration, and PTX and VCR exerted concentration-dependent negative effects in the bioassay. Motility recovered in L-OHP-, PTX-, and VCR-treated worms on terminating exposure. However, CDDP exposure tended to reduce motility even 24 hr after terminating exposure. L-OHP exposure could decrease motility 2 hr after exposure, with a trend toward recovery 24 hr after terminating drug exposure. The findings of the present study revealed that C. elegans could exhibit neuropathy characteristics suggested to be similar to those observed in humans, indicating that this organism could be a suitable model to explore human CIPN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2131/jts.48.311 | DOI Listing |
J Int AIDS Soc
January 2025
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Introduction: Long-acting injectable cabotegravir (CAB-LA) for pre-exposure prophylaxis significantly reduced HIV acquisition in HPTN 084. We report on the safety and CAB-LA pharmacokinetics in pregnant women during the blinded period of HPTN 084.
Methods: Participants were randomized 1:1 to either active cabotegravir (CAB) plus tenofovir disoproxil fumarate/emtricitabine (TDF/FTC) placebo or active TDF/FTC plus CAB placebo.
Cureus
December 2024
Public Health Sciences, Scientific Knowledge for Ageing and Neurological Ailments (SKAN) Research Trust, Bengaluru, IND.
Life Sci Alliance
March 2025
Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
Variants in the hereditary cancer-associated and genes can alter RNA splicing, producing transcripts that encode internally truncated yet potentially functional proteins. However, few studies have quantitatively analyzed variant-specific splicing isoforms. Here, we investigated cells heterozygous and homozygous for the :c.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Neurology, UCSF, San Francisco, United States of America.
NMDA receptor mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long- term effects of exposure to a patient-derived GluN1-specific monoclonal antibody (mAb) during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity.
View Article and Find Full Text PDFJ Eur Acad Dermatol Venereol
December 2024
Department of Dermatology, Medical University of Vienna, Vienna, Austria.
Background: Conventional photodynamic therapy (cPDT) is an effective treatment option for field cancerization and multiple actinic keratoses (AK). The main side effect of cPDT is pain during illumination which in severe cases might necessitate early termination of treatment. Modification of treatment parameters such as light dose and fluence rate is a promising approach to mitigate PDT-associated pain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!