Casein kinase 1 plays a crucial role in carcinogenesis. 4-Hydroxytamoxifen (4-OHT), which is widely used to treat breast cancer, often leads to the development of endometrial carcinoma with poor prognosis, particularly among women who receiving long-term treatment. This study was performed to elucidate whether specific inhibition of casein kinase 1 (CK1) controls 4-OHT-mediated Ishikawa cell carcinogenesis. 4-OHT significantly stimulated the activity of estrogen receptor alpha (ERα) and nuclear translocation and expression of epidermal growth factor receptor (EGFR) from the plasma membrane to perinuclear or nuclear regions, as well as the activities of G-protein-coupled estrogen receptor 1 (GPER1) and Src in Ishikawa cells. However, inhibition of EGFR by Gefitinib blocked all these events, and inhibition of GPER1 or Src produced a partial block. GPER1 and Src controlled Ishikawa cell carcinogenesis in different manners: GPER1 accelerated EGFR mobility without affecting ERα activity, while Src activated ERα and EGFR without any change in GPER1 expression. EGFR and GPER1 performed reciprocal regulation in endometrial cell carcinogenesis via direct interaction in 4-OHT-treated Ishikawa cells, implying a possible key role of GPER1 in these events. Inhibition of CK1 by CKI-7 and IC261, however, impeded all changes beginning with EGFR translocation and activity in 4-OHT-treated Ishikawa cells. These findings indicate that inhibition of CK1 could control 4-OHT-mediated activation and translocation of ER/EGFR and GPER1/Src expression, inhibiting 4-OHT-triggered endometrial carcinogenesis. Therefore, targeting of CK1 by CKI-7 and IC261 could be a prospective adjuvant therapy for breast cancer patients taking tamoxifen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2023.110733 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!