Enteric glia at center stage of inflammatory bowel disease.

Neurosci Lett

Nantes Université, CHU Nantes, INSERM, The Enteric Nervous System in Gut and Brain Disorders, IMAD, 1 rue Gaston Veil, 44035 Nantes Cedex 1, F-44000 Nantes, France. Electronic address:

Published: July 2023

Although our understanding of the pathophysiology of inflammatory bowel disease (IBD) is increasing, the expanding body of knowledge does not simplify the equation but rather reveals diverse, interconnected, and complex mechanisms in IBD. In addition to immune overactivation, defects in intestinal epithelial barrier (IEB) functioning, dysbiosis, and structural and functional abnormalities of the enteric nervous system are emerging as new elements contributing to the development of IBD. In addition to molecular changes in IBD, enteric glia from patients with Crohn's disease (CD) exhibits the inability to strengthen the IEB; these defects are not observed in patients with ulcerative colitis. In addition, there is a growing body of work describing that enteric glia interacts with not only enterocytes and enteric neurons but also other local cellular neighbours. Thus, because of their functions as connectors and regulators of immune cells, IEB, and microbiota, enteric glia could be the keystone of digestive homeostasis that is lacking in patients with CD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2023.137315DOI Listing

Publication Analysis

Top Keywords

enteric glia
16
inflammatory bowel
8
bowel disease
8
ibd addition
8
enteric
6
glia center
4
center stage
4
stage inflammatory
4
disease understanding
4
understanding pathophysiology
4

Similar Publications

Background: Inflammatory bowel disease (IBD) is a chronic condition influenced by diet, which affects gut microbiota and immune functions. The rising prevalence of IBD, linked to Western diets in developing countries, highlights the need for dietary interventions. This study aimed to assess the impact of white kidney beans (WKB) on gut inflammation and microbiota changes, focusing on their effects on enteric glial cells (EGCs) and immune activity in colitis.

View Article and Find Full Text PDF

Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.

View Article and Find Full Text PDF

Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).

View Article and Find Full Text PDF

Background And Aims: The enteric nervous system (ENS), comprised of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation, yet while neuronal aspects have been extensively studied, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!