Resources recovery from landfill leachate (LFL) has been attracting growing attention instead of merely purifying the wastewater. An integrated two-stage membrane distillation (ITMD) was proposed to simultaneously purify LFL and recover ammonia in this study. The results showed that organics could be always effectively rejected by the ITMD regardless of varying feed pH, with COD removal higher than 99%. With feed pH increased from 8.64 to 12, the ammonia migration (50-100%) and capture (36-75%) in LFL were considerably enhanced, boosting the separated ammonia enrichment to 1.3-1.7 times due to the improved ammonium diffusion. However, the corresponding membrane flux of the first MD stage decreased from 13.7 to 10.5 L/m·h. Elevating feed pH caused the deprotonation of NOM and its binding with inorganic ions, constituting a complex fouling layer on the membrane surface in the first MD stage. In contrast, the membrane permeability and fouling of the second MD were not affected by feed pH adjustment because only volatiles passed through the first MD. More importantly, it was estimated that ITMD could obtain high-quality water and recover high-purity ammonium from LFL with relatively low ammonium concentration at an input cost of $ 2-3/m, which was very competitive with existing techniques. These results demonstrated that the ITMD can be a valuable candidate strategy for simultaneous water purification and nutrient recovery from landfill leachate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120080 | DOI Listing |
Chempluschem
January 2025
China University of Mining and Technology, School of electrical and power engineering, NO.1, Daxue Road, 221116, Xuzhou, CHINA.
The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.
View Article and Find Full Text PDFMolecules
December 2024
LAQV/REQUIMTE, Associated Laboratory for Green Chemistry, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
School of Environmental Science and Engineering, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai Jiao Tong University, Shanghai 200240, China.
In landfill leachates containing complex dissolved organic matter (DOM), the link between individual DOM constituents and their inherent oxidizability is unclear. Here, we resolved the molecular signatures of DOM oxidized by OH/O using FT-ICR MS, thereby elucidating their oxidizability and resistance in concentrated leachates. The comprehensive gradual fragmentation of complex leachate DOM was then revealed through a modified machine-learning framework based on 43 key pathways during ozonation.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Engineering, Palermo University, Italy.
The wastewater treatment plants (WWTPs) must be transformed into Water Resource Recovery Facilities (WRRFs) in view of a more sustainable approach focusing on the circular economy concept. Different to WWTPs, the WRRFs have as a major goal not only the wastewater treatment to meet the legislation limits but also the recovery of resources such as: treated water for water reuse, carbon, nutrients, biopolymers etc. In view of boosting the WRRFs application in the real WWTs, a WRRF at Palermo University (UNIPA) has been built within the EU project: Achieving Wider-Uptake of Water Smart Solutions.
View Article and Find Full Text PDFChemosphere
February 2025
Gerald May Department of Civil, Construction, and Environmental Engineering, The University of New Mexico, Albuquerque, NM, 87131, United States. Electronic address:
Enhanced biological phosphorus removal (EBPR) water resource recovery facilities (WRRFs) often fail to meet phosphorus discharge permit limits, indicating a need to improve EBPR to reduce environmental phosphorus discharges. EBPR designs are largely based on the Accumulibacter polyphosphate accumulating organism (PAO) metabolism, while understudied Tetrasphaera PAOs are equally important to EBPR in many facilities worldwide. Anaerobic organic carbon competition is believed to be a key driver of EBPR reliability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!