Background: In melanoma patients, surgical excision of the first draining lymph node, the sentinel lymph node (SLN), is a routine procedure to evaluate lymphogenic metastases. Metastasis detection by histopathological analysis assesses multiple tissue levels with hematoxylin and eosin and immunohistochemically stained glass slides. Considering the amount of tissue to analyze, the detection of metastasis can be highly time-consuming for pathologists. The application of artificial intelligence in the clinical routine has constantly increased over the past few years.

Methods: In this multi-center study, a deep learning method was established on histological tissue sections of sentinel lymph nodes collected from the clinical routine. The algorithm was trained to highlight potential melanoma metastases for further review by pathologists, without relying on supplementary immunohistochemical stainings (e.g. anti-S100, anti-MelanA).

Results: The established method was able to detect the existence of metastasis on individual tissue cuts with an area under the curve of 0.9630 and 0.9856 respectively on two test cohorts from different laboratories. The method was able to accurately identify tumour deposits>0.1 mm and, by automatic tumour diameter measurement, classify these into 0.1 mm to -1.0 mm and>1.0 mm groups, thus identifying and classifying metastasis currently relevant for assessing prognosis and stratifying treatment.

Conclusions: Our results demonstrate that AI-based SLN melanoma metastasis detection has great potential and could become a routinely applied aid for pathologists. Our current study focused on assessing established parameters; however, larger future AI-based studies could identify novel biomarkers potentially further improving SLN-based prognostic and therapeutic predictions for affected patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2023.04.023DOI Listing

Publication Analysis

Top Keywords

deep learning
8
melanoma metastases
8
lymph nodes
8
lymph node
8
sentinel lymph
8
metastasis detection
8
clinical routine
8
metastasis
5
detection
4
learning detection
4

Similar Publications

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

We study image segmentation using spatiotemporal dynamics in a recurrent neural network where the state of each unit is given by a complex number. We show that this network generates sophisticated spatiotemporal dynamics that can effectively divide an image into groups according to a scene's structural characteristics. We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images.

View Article and Find Full Text PDF

Accurate diagnosis of pancreatic cancer using CT scan images is critical for early detection and treatment, potentially saving numerous lives globally. Manual identification of pancreatic tumors by radiologists is challenging and time-consuming due to the complex nature of CT scan images and variations in tumor shape, size, and location of the pancreatic tumor also make it challenging to detect and classify different types of tumors. Thus, to address this challenge we proposed a four-stage framework of computer-aided diagnosis systems.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) offers high-resolution images of the eye's fundus. This enables thorough analysis of retinal health by doctors, providing a solid basis for diagnosis and treatment. With the development of deep learning, deep learning-based methods are becoming more popular for fundus OCT image segmentation.

View Article and Find Full Text PDF

Enhancing the performance of 5ph-IPMSM control plays a crucial role in advancing various innovative applications such as electric vehicles. This paper proposes a new reinforcement learning (RL) control algorithm based twin-delayed deep deterministic policy gradient (TD3) algorithm to tune two cascaded PI controllers in a five-phase interior permanent magnet synchronous motor (5ph-IPMSM) drive system based model predictive control (MPC). The main purpose of the control methodology is to optimize the 5ph-IPMSM speed response either in constant torque region or constant power region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!