Nanostructured metallic materials with abundant high-angle grain boundaries exhibit high strength and good radiation resistance. While the nanoscale grains induce high strength, they also degrade tensile ductility. We show that a gradient nanostructured ferritic steel exhibits simultaneous improvement in yield strength by 36% and uniform elongation by 50% compared to the homogenously structured counterpart. In situ tension studies coupled with electron backscattered diffraction analyses reveal intricate coordinated deformation mechanisms in the gradient structures. The outermost nanolaminate grains sustain a substantial plastic strain via a profound deformation mechanism involving prominent grain reorientation. This synergistic plastic co-deformation process alters the rupture mode in the post-necking regime, thus delaying the onset of fracture. The present discovery highlights the intrinsic plasticity of nanolaminate grains and their significance in simultaneous improvement of strength and tensile ductility of structural metallic materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413645PMC
http://dx.doi.org/10.1126/sciadv.add9780DOI Listing

Publication Analysis

Top Keywords

gradient nanostructured
8
metallic materials
8
high strength
8
tensile ductility
8
simultaneous improvement
8
nanolaminate grains
8
nanostructured steel
4
steel superior
4
superior tensile
4
tensile plasticity
4

Similar Publications

Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous CuO-SnO Nanospheres.

Nanomaterials (Basel)

December 2024

Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.

View Article and Find Full Text PDF

CXCL12 impact on glioblastoma cells behaviors under dynamic culture conditions: Insights for developing new therapeutic approaches.

PLoS One

December 2024

Faculty of Engineering, Department of Chemical Engineering and Biotechnological Engineering, 3D Dynamic Cell Culture Systems Laboratory, Université de Sherbrooke, Sherbrooke, QC, Canada.

Glioblastoma multiforme (GBM) is the most prevalent malignant brain tumor, with an average survival time of 14 to 20 months. Its capacity to invade brain parenchyma leads to the failure of conventional treatments and subsequent tumor recurrence. Recent studies have explored new therapeutic strategies using a chemoattracting gradient to attract GBM cells into a soft hydrogel trap where they can be exposed to higher doses of radiation or chemotherapy.

View Article and Find Full Text PDF

Structural, Magnetic, and Dielectric Properties of Laser-Ablated CoFeO/BaTiO Bilayers Deposited over Highly Doped Si(100).

Materials (Basel)

November 2024

Center of Physics of Minho and Porto Universities (CF-UM-UP), Laboratory for Materials and Emergent Technologies (LaPMET), Departamento de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO (BTO) and CoFeO (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO layer thickness (50-220 nm) on the films' structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO phase and a cubic spinel CoFeO layer.

View Article and Find Full Text PDF

Fabrication of Porous MXene/Cellulose Nanofibers Composite Membrane for Maximum Osmotic Energy Harvesting.

Int J Mol Sci

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.

Two-dimensional (2D) nanofluidic channels are emerging as potential candidates for harnessing osmotic energy from salinity gradients. However, conventional 2D nanofluidic membranes suffer from high transport resistance and low ion selectivity, leading to inefficient transport dynamics and limiting energy conversion performance. In this study, we present a novel composite membrane consisting of porous MXene (PMXene) nanosheets featuring etched nanopores, in conjunction with cellulose nanofibers (CNF), yielding enhancement in ion flux and ion selectivity.

View Article and Find Full Text PDF

Enzyme-powered nanomotors have attracted significant attention in materials science and biomedicine for their biocompatibility, versatility, and the use of biofuels in biological environments. Here, we employ a hybrid mesoscale method combining molecular dynamics and multi-particle collision dynamics (MD-MPC) to study the dynamics of nanomotors powered by enzyme reactions. Two cascade enzymes are constructed to be layered on the same surface of a Janus colloid, providing a confined space that greatly enhances reaction efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!