Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Localized "water-in-salt" (LWIS) electrolytes are promising candidates for the next generation of high-voltage aqueous electrolytes with low viscosity/salt beyond high-salt electrolytes. An effective yet high-function diluent mainly determines the properties of LWIS electrolytes, being a key issue. Herein, the donor number of solvents is identified to serve as a descriptor of interaction intensity between solvents and salts to screen the organic diluents having few impacts on the solvation microenvironment and intrinsic properties of the original high-salt electrolyte, further leading to the construction of a novel low-viscosity electrolyte with a low dosage of the LiNO salt and well-kept intrinsic Li-NO-HO clusters. Nonsolvating diluents, especially acetonitrile (AN) that has never been reported previously, are presented with the capability of constructing a LWIS electrolyte with nonflammability, electrode-philic features, lower viscosity, decreased salt dosage, and a greatly enhanced ion diffusion coefficient by about 280 times. This strongly relies on a huge difference of about 5000 times in coordination and solubility between AN and HO toward LiNO (0.05 vs 25 mol kg) and the moderate interaction between AN and HO. Multi-spectroscopic techniques and molecular dynamics simulations uncover the solvation chemistry at the microscopic level and the interplay among cations, anions, and HO without/with AN. The identified unique diluting and nonsolvating effects of AN reveal well-maintained cation-anion-HO clusters and enhanced intermolecular hydrogen bonding between AN and HO, further reinforcing the HO stability and expanding the voltage window up to 3.28 V. This is a breakthrough that is far beyond high-viscosity/salt electrolytes for high-voltage and high-rate aqueous supercapacitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c02754 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!