AI Article Synopsis

  • The study develops a biomimetic bilayer scaffold made of silk fibroin and sodium alginate to effectively deliver human umbilical mesenchymal stem cells (hUC-MSCs) for wound healing.
  • The scaffold features a dense upper layer and a porous lower layer, which supports the survival of hUC-MSCs for up to 14 days while maintaining their stemness.
  • The treatment using the scaffold improves healing outcomes by promoting tissue regeneration, reducing scar formation, and enhancing hair follicle regeneration through modulation of specific molecular pathways.

Article Abstract

Efficient local delivery of mesenchymal stem cells (MSCs) is a decisive factor for their application in regeneration processes. Here, we prepared a biomimetic bilayer silk fibroin/sodium alginate (SF/SA) scaffold to deliver human umbilical mesenchymal stem cells (hUC-MSCs) for wound healing. An SA membrane was prepared by the casting method on the upper layer of the scaffold to simulate the dense epidermal structure. On the lower layer, porous materials simulating the loose structure of the dermis were formed by the freeze-drying method. , the scaffold was proven to have a high-density pore structure, good swelling property, and suitable degradation rate. The hUC-MSCs could survive on the scaffold for up to 14 days and maintain cell stemness for at least 7 days. , SF/SA scaffolds loaded with hUC-MSCs (M-SF/SA) were applied to full-thickness defect wounds and compared with the local injection of hUC-MSCs. The M-SF/SA group showed excellent therapeutic efficacy, characterized by induction of macrophage polarization, regulation of TGF-β expression and collagen components, and enhancement of vascular regeneration, thereby preventing scar formation and promoting hair follicle regeneration. Furthermore, the expression of endoplasmic reticulum stress markers IRE1, XBP1, and CHOP was inhibited significantly in M-SF/SA treatment. In conclusion, the bilayer SF/SA scaffold is an ideal delivery platform for hUC-MSCs, and the M-SF/SA system could locally promote scarless skin healing and hair follicle regeneration by alleviating the IRE1/XBP1 signal pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.3c00059DOI Listing

Publication Analysis

Top Keywords

hair follicle
12
follicle regeneration
12
huc-mscs m-sf/sa
12
bilayer silk
8
silk fibroin/sodium
8
fibroin/sodium alginate
8
healing hair
8
mesenchymal stem
8
stem cells
8
sf/sa scaffold
8

Similar Publications

Cosmetic filler-induced hair loss: case series and literature review.

J Dermatolog Treat

December 2024

Department of Dermatology, Beijing TongRen Hospital, Capital Medical University, Beijing, China.

Aim: To present three cases of filler-induced alopecia (FIA) and summarize the current knowledge of its clinical features, mechanisms and treatments.

Methods: In the first two cases, two females developed well-defined triangular patches of hair loss after hyaluronic acid (HA) injections, and received corticosteriod injections with topical 5% minoxidil. The third case described another female who experienced alopecia areata-like hair loss after autologous fat grafting, and received combined therapies including corticosteriod, 5% minoxidil and microneedling.

View Article and Find Full Text PDF

Androgenic alopecia (AGA), the most prevalent type of progressive hair loss, currently lacks an effective topical treatment regimen. In this study, we synthesized an ionic liquid (IL) to co-solubilize minoxidil (MXD) and finasteride (FIN) and subsequently formulated them into an in situ thermosensitive ionic liquid/cyclodextrin/poloxamer hydrogel (ICPG), termed M + F@ICPG. M + F@ICPG was developed for the transdermal co-delivery of these two drugs, aiming to provide a multipath therapeutic approach for AGA while avoiding the adverse effects commonly associated with oral FIN and topical MXD tincture.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

High-frequency ultrasound (HFUS) has been reported to be useful for the diagnosis of cutaneous diseases; however, its two-dimensional nature limits the value both in quantitative and qualitative evaluation. Three-dimensional (3D) visualization might help overcome the weakness of the currently existing HFUS. 3D-HFUS was newly developed and applied to various skin tumors and inflammatory hair diseases to assess its validity and advantages for dermatological use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!