Stable isotopes are an important tool to uncover animal migration. Geographic natal assignments often require categorizing the spatial domain through a nominal approach, which can introduce bias given the continuous nature of these tracers. Stable isotopes predicted over a spatial gradient (i.e., isoscapes) allow a probabilistic and continuous assignment of origin across space, although applications to marine organisms remain limited. We present a new framework that integrates nominal and continuous assignment approaches by (1) developing a machine-learning multi-model ensemble classifier using Bayesian model averaging (nominal); and (2) integrating nominal predictions with continuous isoscapes to estimate the probability of origin across the spatial domain (continuous). We applied this integrated framework to predict the geographic origin of the Northwest Atlantic mackerel (Scomber scombrus), a migratory pelagic fish comprised of northern and southern components that have distinct spawning sites off Canada (northern contingent) and the US (southern contingent), and seasonally overlap in the US fished regions. The nominal approach based on otolith carbon and oxygen stable isotopes (δ13C/δ18O) yielded high contingent classification accuracy (84.9%). Contingent assignment of unknown-origin samples revealed prevalent, yet highly varied contingent mixing levels (12.5-83.7%) within the US waters over four decades (1975-2019). Nominal predictions were integrated into mackerel-specific otolith oxygen isoscapes developed independently for Canadian and US waters. The combined approach identified geographic nursery hotspots in known spawning sites, but also detected geographic shifts over multi-decadal time scales. This framework can be applied to other marine species to understand migration and connectivity at a high spatial resolution, relevant to management of unit stocks in fisheries and other conservation assessments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10231828 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285702 | PLOS |
Am J Clin Nutr
January 2025
Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands. Electronic address:
Background: Industrial processing and storage of milk products can strongly increase protein glycation level. Previously, we have reported that ingestion of highly glycated milk protein attenuates the post-prandial rise in plasma lysine concentrations when compared to the ingestion of an equivalent amount of milk protein with a low glycation level. Whether the attenuated increase in plasma lysine availability is attributed to compromised protein digestion and subsequent lysine absorption remains to be established.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Dept. of Science Education, Ewha Womans University, Seoul 03760, South Korea. Electronic address:
Although sulfur-bearing minerals are valuable resources, they pose significant environmental risks to river ecosystems by releasing hazardous leachate. Accurately tracing these sources is crucial but challenging due to overlapping chemical signatures and pollutant transport dynamics in river systems. This study investigates seasonal and spatial variations in sulfate (SO) and trace element contributions in mining districts of the upper Nakdong River basin, South Korea.
View Article and Find Full Text PDFKidney360
November 2024
The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, CA, USA 94304.
Background: Hemodialysis may excessively remove valuable solutes. Untargeted metabolomics data from a prior study suggested that ergothioneine was depleted in the plasma of hemodialysis subjects. Ergothioneine is a dietary-derived solute with antioxidant properties.
View Article and Find Full Text PDFAnal Chem
January 2025
Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!