SARS-CoV-2 infection still poses health threats especially to older and immunocompromised individuals. New emerging variants of SARS-CoV-2, including Omicron and Arcturus, have been challenging the effectiveness of humoral immunity resulting from repeated vaccination and infection. With recent study implying a wave of new mutants in vaccinated people making them more susceptible to the newest variants and fueling a rapid viral evolution, there is a need for alternative or adjunct approaches against coronavirus infections other than vaccines. Our earlier work indicated that a specific combination of micronutrients and phytochemicals can inhibit key infection mechanisms shared by SARS-CoV-2 and its variants in vitro. Here we demonstrate in vivo that an intake of this micronutrient combination before and during infection of mice with engineered SARS-CoV-2 virions and HCoV-229E virus results in a significant decrease in viral load and level of spike protein in the lungs. This was accompanied by decreased inflammatory response, including TNFα, IL1β, ILα, and IL17. These and our earlier results confirm that by targeting multiple mechanisms simultaneously by a combination treatment we can effectively and safely challenge SARS-CoV-2 and HCoV-229E virus. If clinically confirmed, such an approach could complement already in-use preventive and therapeutic strategies against coronavirus infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10351576PMC
http://dx.doi.org/10.1556/1886.2023.00010DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 virions
8
coronavirus infections
8
hcov-229e virus
8
sars-cov-2
6
phytochemicals micronutrients
4
micronutrients suppressing
4
suppressing infectivity
4
infectivity caused
4
caused sars-cov-2
4
virions seasonal
4

Similar Publications

Unlabelled: SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production.

View Article and Find Full Text PDF

Despite all the progress in treating SARS-CoV-2, escape mutants to current therapies remain a constant concern. Promising alternative treatments for current and future coronaviruses are those that limit escape mutants by inhibiting multiple pathogenic targets, analogous to the current strategies for treating HCV and HIV. With increasing popularity and ease of manufacturing of RNA technologies for vaccines and drugs, therapeutic microRNAs represent a promising option.

View Article and Find Full Text PDF

Detrimental Effects of Anti-Nucleocapsid Antibodies in SARS-CoV-2 Infection, Reinfection, and the Post-Acute Sequelae of COVID-19.

Pathogens

December 2024

Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan.

Antibody-dependent enhancement (ADE) is a phenomenon in which antibodies enhance subsequent viral infections rather than preventing them. Sub-optimal levels of neutralizing antibodies in individuals infected with dengue virus are known to be associated with severe disease upon reinfection with a different dengue virus serotype. For Severe Acute Respiratory Syndrome Coronavirus type-2 infection, three types of ADE have been proposed: (1) Fc receptor-dependent ADE of infection in cells expressing Fc receptors, such as macrophages by anti-spike antibodies, (2) Fc receptor-independent ADE of infection in epithelial cells by anti-spike antibodies, and (3) Fc receptor-dependent ADE of cytokine production in cells expressing Fc receptors, such as macrophages by anti-nucleocapsid antibodies.

View Article and Find Full Text PDF

Unlabelled: Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care.

View Article and Find Full Text PDF
Article Synopsis
  • CI-qPCR assays provide a viable alternative to traditional cell culture methods for assessing virus viability in wastewater, specifically focusing on human pathogens.
  • The study evaluated three CI-qPCR methods (Crosslinker, TruTiter, and PMAxx) on various viruses like HAdV and SARS-CoV-2, revealing differences in sensitivity and effectiveness between them.
  • Findings suggest that while PMAxx struggled with detecting certain heat-inactivated viruses, both PMAxx and TruTiter successfully identified intact viruses in wastewater, showing promise for improving public health monitoring and response to emerging viral threats.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!