Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Interconnected food, energy, water systems (FEWS) require systems level understanding to design efficient and effective management strategies and policies that address potentially competing challenges of production and environmental quality. Adoption of agricultural best management practices (BMPs) can reduce nonpoint source phosphorus (P) loads, but there are also opportunities to recover P from point sources, which could also reduce demand for mineral P fertilizer derived from declining geologic reserves. Here, we apply the Integrated Technology-Environment-Economics Model to investigate the consequences of watershed-scale portfolios of agricultural BMPs and environmental and biological technologies (EBTs) for co-benefits of FEWS in Corn Belt watersheds. Via a pilot study with a representative agro-industrial watershed with high P and nitrogen discharge, we show achieving the nutrient reduction goals in the watershed; BMP-only portfolios require extensive and costly land-use change (19% of agricultural land) to perennial energy grasses, while portfolios combining BMPs and EBTs can improve water quality while recovering P from corn biorefineries and wastewater streams with only 4% agricultural land-use change. The potential amount of P recovered from EBTs is estimated as 2 times as much as the agronomic P requirement in the watershed, showing the promise of the P circular economy. These findings inform solution development based on the combination of agricultural BMPs and EBTs for the cobenefits of FEWS in Corn Belt watersheds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.3c02055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!