WD40 repeat-containing proteins play a key role in many cellular functions including signal transduction, protein degradation, and apoptosis. The WD40 domain is highly conserved, and its typical structure is a β-propeller consisting of 4-8 blades which probably serves as a scaffold for protein-protein interaction. Some WD40 repeat-containing proteins form part of the corepressor complex of nuclear hormone receptors, a family of ligand-dependent transcription factors that play a central role in the regulation of gene transcription. This explains their involvement in endocrine physiology and pathology. In the present review, we first touch upon the structure of WD40 repeat-containing proteins. Next, we describe our current understanding of the role of WD40 domain-containing proteins in nuclear receptor signaling, e.g., as corepressor or coactivator. In the final part of this review, we focus on WD40 domain-containing proteins that are associated with endocrine pathologies. These pathologies vary from isolated dysfunction of one endocrine axis, e.g., congenital isolated central hypothyroidism, to more complex congenital syndromes comprising endocrine phenotypes, such as the Triple-A syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1530/JME-22-0217 | DOI Listing |
Nat Commun
December 2024
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
The emergence of Plasmodium falciparum parasites resistant to artemisinins compromises the efficacy of Artemisinin Combination Therapies (ACTs), the global first-line malaria treatment. Artemisinin resistance is a complex genetic trait in which nonsynonymous SNPs in PfK13 cooperate with other genetic variations. Here, we present population genomic/transcriptomic analyses of P.
View Article and Find Full Text PDFJ Med Chem
November 2024
Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, ON M5G 1L7, Canada.
Target class-focused drug discovery has a strong track record in pharmaceutical research, yet public domain data indicate that many members of protein families remain unliganded. Here we present a systematic approach to scale up the discovery and characterization of small molecule ligands for the WD40 repeat (WDR) protein family. We developed a comprehensive suite of protocols for protein production, crystallography, and biophysical, biochemical, and cellular assays.
View Article and Find Full Text PDFStructure
December 2024
China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 450003, China; College of Medicine, Zhengzhou University, Zhengzhou, Henan 450052, China. Electronic address:
WDR91 and SORF1, members of the WD repeat-containing protein 91 family, control phosphoinositide conversion by inhibiting phosphatidylinositol 3-kinase activity on endosomes, which promotes endosome maturation. Here, we report the crystal structure of the human WDR91 WD40 domain complexed with Rab7 that has an unusual interface at the C-terminus of the Rab7 switch II region. WDR91 is highly selective for Rab7 among the tested GTPases.
View Article and Find Full Text PDFEur Thyroid J
October 2024
Endocrine Laboratory, Department of Laboratory Medicine, University of Amsterdam, Amsterdam, the Netherlands.
Background: Mutations in TBL1X, part of the NCOR1/SMRT corepressor complex, were identified in patients with hereditary X-linked central congenital hypothyroidism and associated hearing loss. The role of TBL1X in thyroid hormone (TH) action, however, is incompletely understood. The aim of the present study was to investigate the role of TBL1X on T3-regulated gene expression in two human liver cell models.
View Article and Find Full Text PDFNat Commun
July 2024
Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands.
Transcription-blocking DNA lesions are specifically targeted by transcription-coupled nucleotide excision repair (TC-NER), which removes a broad spectrum of DNA lesions to preserve transcriptional output and thereby cellular homeostasis to counteract aging. TC-NER is initiated by the stalling of RNA polymerase II at DNA lesions, which triggers the assembly of the TC-NER-specific proteins CSA, CSB and UVSSA. CSA, a WD40-repeat containing protein, is the substrate receptor subunit of a cullin-RING ubiquitin ligase complex composed of DDB1, CUL4A/B and RBX1 (CRL4).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!