Fluoropyrimidines are chemotherapeutic agents widely used for the treatment of various solid tumors. Commonly prescribed FPs include 5-fluorouracil (5-FU) and its oral prodrugs capecitabine (CAP) and tegafur. Bioconversion of 5-FU prodrugs to 5-FU and subsequent metabolic activation of 5-FU are required for the formation of fluorodeoxyuridine triphosphate (FdUTP) and fluorouridine triphosphate, the active nucleotides through which 5-FU exerts its antimetabolite actions. A significant proportion of FP-treated patients develop severe or life-threatening, even fatal, toxicity. It is well known that FP-induced toxicity is governed by genetic factors, with dihydropyrimidine dehydrogenase (), the rate limiting enzyme in 5-FU catabolism, being currently the cornerstone of FP pharmacogenomics. -based dosing guidelines exist to guide FP chemotherapy suggesting significant dose reductions in defective patients. Accumulated evidence shows that additional variations in other genes implicated in FP pharmacokinetics and pharmacodynamics increase risk for FP toxicity, therefore taking into account more gene variations in FP dosing guidelines holds promise to improve FP pharmacotherapy. In this review we describe the current knowledge on pharmacogenomics of FP-related genes, beyond , focusing on FP toxicity risk and genetic effects on FP dose reductions. We propose that in the future, FP dosing guidelines may be expanded to include a broader ethnicity-based genetic panel as well as gene*gene and gender*gene interactions towards safer FP prescription.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10226670 | PMC |
http://dx.doi.org/10.3389/fphar.2023.1184523 | DOI Listing |
Introduction: Effective antimicrobial stewardship programs require data on antimicrobial consumption (AMC) and utilization (AMU) to guide interventions. However, such data is often scarce in low-resource settings. We describe the consumption and utilization of antibiotics at a large tertiary-level hospital in Uganda.
View Article and Find Full Text PDFHealthcare (Basel)
December 2024
Faculty of Pharmacy, Le Van Thinh Hospital, Ho Chi Minh City 700000, Vietnam.
Dyslipidemia, a significant risk factor for cardiovascular disease (CVD), is marked by abnormal lipid levels, such as the elevated lowering of low-density lipoprotein cholesterol (LDL-C). Statins are the first-line treatment for LDL-C reduction. Pitavastatin (PIT) has shown potential in lowering LDL-C and improving high-density lipoprotein cholesterol (HDL-C).
View Article and Find Full Text PDFEmerg Med Australas
February 2025
Addiction Psychiatry and Toxicology, Northern Health, Melbourne, Victoria, Australia.
Serotonin toxicity is a potentially fatal condition caused by increased serotonergic activity in the central nervous system. Cyproheptadine, a serotonergic antagonist, is recommended for treatment; however, there is a lack of evidence to support its use. The present study aimed to evaluate the evidence for the use of cyproheptadine in the management of serotonin toxicity following deliberate self-poisoning.
View Article and Find Full Text PDFBMC Complement Med Ther
January 2025
School of Pharmaceutical Sciences, University Sains Malaysia, Gelugor, Malaysia.
Background: Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by damage and inflammation of hepatocytes. Some medicinal plants have shown antioxidant and anti-inflammatory effects on liver cells. We aimed to investigate the hepatoprotective effect of Heptex® capsules containing 200 mg of Dukung Anak (a powdered extract from aerial parts of Phyllanthus niruri) and 100 mg of Milk Thistle (a powdered extract from fruits of Silybum marianum) in patients with an apparent risk factor for NASH.
View Article and Find Full Text PDFJ Nephrol
January 2025
Nephrology Unit, V. Fazzi Hospital, Lecce, Italy.
Background: The KDIGO recommendation in acute kidney injury (AKI) patients requiring kidney replacement therapy is to deliver a Urea Kt/V of 1.3 for intermittent thrice weekly hemodialysis, and an effluent volume of 20-25 ml/kg/hour when using continuous renal replacement therapy (CRRT). Considering that prior studies have suggested equivalent outcomes when using CRRT-prolonged intermittent renal replacement therapy (PIRRT) effluent doses below 20 mL/kg/h, our group investigated the possible benefits of low effluent volume CRRT-PIRRT (12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!