The preharvest maize mycobiome may be crucial in defining the health of the crop in terms of potential disease burden and mycotoxins. We investigated the preharvest maize mycobiome structure, including the influence of weather patterns, in terms of rainfall intensity, on its composition. In addition, we investigated correlation of genera and with maize fumonisin-B1 and aflatoxin. Forty maize fields from selected districts in the wetter northern (N) and drier southern (S) agroecological zones of Zambia were sampled twice over two seasons (1 and 2). The defined weather variables over the two seasons were low rainfall with dry spell (S1), low rainfall (S2), and high rainfall (N1 and N2). High-throughput DNA amplicon sequencing of internal transcribed spacer 1 (ITS1) was used to determine the mycobiome structure and the composition in relation to rainfall patterns. We detected 61 genera, with and previously unreported in Zambia to have the highest frequency of detection on the maize. There was a significant difference in fungal genera composition between S1 and S2 but no difference between N1 and N2. The weather pattern with dry spell, S1, had a strong proliferation of and xerophiles , , and . The four genera drove the difference in composition between S1 and S2 and the significantly higher fungal diversity in S1 compared to N2. Of the mycotoxin-important fungi, dry conditions (S1) were a key driver for proliferation of , while proliferation occurred irrespective of weather patterns. The relative abundance of and resonated with maize aflatoxin and fumonisin-B1 levels, respectively. Fungi contaminate various crops worldwide. Maize, an important human staple and livestock cereal, is susceptible to contamination with fungi in the field. Fungi are drivers of plant disease and can compromise yield. Some species of fungi are known to produce chemical compounds (mycotoxins), which are cancer-causing agents in humans and impair livestock productivity. It is important to understand the spectrum of fungi on maize and how weather conditions can impact their abundance. This is because the abundance of fungi in the field can have a bearing on the health of the crop as well as potential for mycotoxins contamination. By understanding the spectrum of the preharvest fungi, it becomes possible to know the key fungi adapted to the maize and subsequently the potential for crop disease as well as mycotoxins contamination. The influence of weather conditions on the spectrum of preharvest fungi on maize has not been fully explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304879 | PMC |
http://dx.doi.org/10.1128/aem.00078-23 | DOI Listing |
PLoS One
January 2025
Sustainability and Environmental Education, Goshen College, Goshen, IN, United States of America.
Human exposure to mycotoxins is common and often severe in underregulated maize-based food systems. This study explored how monitoring of these systems could help to identify when and where outbreaks occur and inform potential mitigation efforts. Within a maize smallholder system in Kongwa District, Tanzania, we performed two food surveys of mycotoxin contamination at local grain mills, documenting high levels of aflatoxins and fumonisins in maize destined for human consumption.
View Article and Find Full Text PDFInsects
December 2024
Julius-Kuehn Institute, Koenigin-Luise-Str. 19, 14195 Berlin, Germany.
Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A study was conducted in 2021 in the Kisumu and Makueni counties, Kenya, to determine how different maize cropping systems affect insect diversity, insect damage to maize, and insects' ability to spread mycotoxigenic fungi in pre-harvest maize. The field experiments used a randomized complete block design, with the four treatments being maize monocrop, maize intercropped with beans, maize-bean intercrop with the addition of at planting, and push-pull technology.
View Article and Find Full Text PDFNeotrop Entomol
December 2024
Embrapa Soja, P.O. Box 4006, Londrina, Paraná, Brazil.
The crop system of soybean (summer)-maize (fall/winter) succession has been adopted widely in the Neotropics. It inadvertently provides food to stink bugs between crops, forming "green-bridges," which favor Diceraeus melacanthus (Dallas) outbreaks. Attempts to control these outbreaks, usually occurring at the end of the soybean cycle and the beginning of the maize cycle, were made by spraying insecticides at the time of soybean desiccation in addition to insecticide seed treatment on maize, but apparently it has been insufficient to provide acceptable control.
View Article and Find Full Text PDFPlant Dis
December 2024
USDA ARS, Aflatoxin Control Laboratory, 416 West Congress Street, Tucson, Arizona, United States, 85701;
Fusarium ear rot (FER) and Gibberella ear rot (GER) caused by Fusarium species are major diseases affecting maize production in Ethiopia. In addition to reducing quality and yield, these fungi can produce mycotoxins that contaminate maize kernels and, thereby, pose health hazards to humans and livestock. A survey was conducted in 10 administrative zones of Ethiopia within the major maize-growing regions of the country to identify the species of Fusarium associated with ear rot.
View Article and Find Full Text PDFMycotoxin Res
February 2025
School of Life Sciences and Bio-Engineering, the Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania.
Aflatoxins are toxic secondary metabolites produced by Aspergillus species that infect staple foods like maize causing threat to public health and economic impacts. The use of atoxigenic Aspergillus species is considered one of the promising technologies to prevent aflatoxin contamination in maize. Tanzania approved the use of aflatoxin biocontrol (Aflasafe®) in 2018 and introduced it to eight districts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!