The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308955 | PMC |
http://dx.doi.org/10.1128/jvi.00327-23 | DOI Listing |
J Biol Inorg Chem
January 2025
Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA.
Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
February 2025
Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA. Electronic address:
The acquisition of ferrous iron (Fe) is crucial for the survival of many pathogenic bacteria living within acidic and/or anoxic conditions such as Vibrio cholerae, the causative agent of the disease cholera. Bacterial pathogens utilize iron as a cofactor to drive essential metabolic processes, and the primary prokaryotic Fe acquisition mechanism is the ferrous iron transport (Feo) system. In V.
View Article and Find Full Text PDFThe production of functionally active membrane proteins (MPs) in an adequate membrane environment is a key step in structural biology. Polymer-lipid particles based on styrene and maleic acid (SMA) represent a promising type of membrane mimic, as they can extract properly folded MPs directly from their native lipid environment. However, the original SMA polymer is sensitive to acidic pH levels, which has led to the development of several modifications: SMA-EA, SMA-QA, and others.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, China; Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China; Key Laboratory of Drug Target Research and Drug Discovery of Neurodegenerative Disease, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China. Electronic address:
Biophys Chem
January 2025
Health & Life Sciences, Aston University, Birmingham, UK; Aston Institute for Membrane Excellence, Aston University, Birmingham, UK.. Electronic address:
Extraction of proteins from the membrane using styrene maleic acid co-polymers (SMA), forming SMA lipid particles (SMALPs), has allowed for the first time the purification of membrane proteins with their lipid bilayer environment. To date, SMA2000 has been the most effective polymer used for this purpose, with a 2:1 ratio of styrene:maleic acid, and styrene and maleic acid moieties spread statistically throughout the chain. However, SMA2000 is a highly polydisperse polymer that contains an array of different polymer lengths and sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!