The Lyme disease spirochete Borrelia burgdorferi can cause a multitude of clinical manifestations because of its ability to disseminate into any organ system via migration through soft tissue, the lymphatic system, and the circulatory system. The latter is believed to constitute the predominant pathway for dissemination to distal sites from the inoculating tick bite. In spite of its importance, the hematogenous dissemination process remains largely uncharacterized, particularly due to difficulties studying this process in a living host and the lack of an system that recapitulates animal infection. In the current work, we provide the first information regarding the stage of the vascular transmigration pathway where three important adhesins function during invasion of mouse knee joint peripheral tissue from postcapillary venules. Using intravital imaging coupled with genetic experiments employing sequential double infection, we show a complex temporal choreography of P66, decorin binding proteins (DbpA/B), and outer surface protein C (OspC) at discrete steps along the pathway of vascular escape, underscoring the importance of B. burgdorferi adhesins in hematogenous dissemination in the mouse knee joint and the complexity of vascular transmigration by a disseminating pathogen. Lyme disease is caused by the spirochete Borrelia burgdorferi, which is transmitted by a bite from an infected tick. Disease development involves a complex series of host-pathogen interactions as well as dissemination of the infecting organisms to sites distal to the original tick bite. The predominant pathway for this is believed to be hematogenous dissemination. The mechanism by which the spirochetes escape circulation is unknown. Here, using intravital microscopy, where the Lyme spirochete can be observed in a living mouse, we have studied the stage in the vascular escape process where each of three surface adhesins functions to facilitate escape of the spirochete from postcapillary venules to invade mouse knee joint peripheral tissue. A complex pattern of involvement at various locations in the multistage process is described using a unique experimental approach that is applicable to other disseminating pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434219 | PMC |
http://dx.doi.org/10.1128/spectrum.01254-23 | DOI Listing |
Int J Environ Health Res
January 2025
School of Geosciences, University of South Florida, Tampa, FL, USA.
The geographical distribution of Lyme disease has been attributed to changes in Earth's climate and associated distribution of its vector, ticks of the genus . This study focuses on the impact of climatic and meteorological conditions on Lyme disease transmission in East Central Ohio, an emerging hotspot of cases. Using county-level data from 2001 to 2023, we analyzed the relationship between Lyme disease cases and temperature, precipitation, and the Southern Oscillation Index (SOI) using a distributed lag nonlinear model (DLNM).
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
In , the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σ). Understanding the regulation of RpoS is crucial for elucidating how is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the mRNA stability.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
January 2025
Global Health and Interdisciplinary Disease Research Center and Center for Genomics, College of Public Health, Interdisciplinary Research Building (IDRB), Tampa, Florida, USA.
Mice in the genus Peromyscus are abundant and geographically widespread in North America, serving as reservoirs for zoonotic pathogens, including Borrelia burgdorferi (B. burgdorferi), the causative agent of Lyme disease, transmitted by Ixodes scapularis ticks. While the white-footed mouse (Peromyscus leucopus (P.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
University Center for Research and Development, Chandigarh University, Mohali, Punjab, India.
Background And Objective: Lyme disease, caused by , presents major health challenges worldwide, leading to serious neurological and musculoskeletal issues that impact patients' lives and healthcare systems. This systematic review and meta-analysis aim to determine the prevalence and link between Lyme disease and these complications, aiming to enhance clinical and public health approaches.
Methods: We systematically searched PubMed, EMBASE, and Web of Science up until April 01, 2024, to find studies reporting the prevalence and severity of neurological and musculoskeletal complications associated with Lyme disease.
Cureus
December 2024
Internal Medicine, Central Michigan University, Saginaw, USA.
Lyme neuroborreliosis can present with isolated neurological manifestations, posing diagnostic challenges, especially in the absence of hallmark dermatological symptoms like erythema migrans. This case highlights a patient with isolated cervical radiculopathy due to Lyme neuroborreliosis, presenting without systemic features such as fever, arthralgia, or rash. The diagnosis was confirmed through serological testing, with positive findings on the Western blot.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!