Carbohydrate-binding proteins, known as lectins, play a wide range of vital roles in cellular and pathological processes. Mimicking lectins to achieve specific molecular recognition of carbohydrates in organic and aqueous media using artificial receptors is challenging due to the synthetic hurdles of receptors and structural similarities between sugars. Carbohydrate recognition using non-covalent interactions remains a vast topic. This review summarises the recognition of carbohydrates using metal-ligand assemblies, including metallosupramolecules, macrocycles, and cages. It also highlights the challenges and future directions in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3ob00649b | DOI Listing |
Sci Adv
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria.
Prokaryotic microorganisms, comprising and , exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
October 2024
Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporter systems are divided into importers and exporters that facilitate the movement of diverse substrate molecules across the lipid bilayer, against the concentration gradient. These transporters comprise two highly conserved nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Unlike ABC exporters, prokaryotic ABC importers require an additional substrate-binding protein (SBP) as a recognition site for specific substrate translocation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
The clownfish - sea anemone system is a great example of symbiotic mutualism where host «toxicity» does not impact its symbiont partner, although the underlying protection mechanism remains unclear. The regulation of nematocyst discharge in cnidarians involves N-acetylated sugars like sialic acid, that bind chemoreceptors on the tentacles of sea anemones, leading to the release of stings. It has been suggested that clownfish could be deprived of sialic acid on their skin surface, sparing them from being stung and facilitating mutualism with sea anemones.
View Article and Find Full Text PDFAnticancer Agents Med Chem
January 2025
Department of Biology, Faculty of Science, Atatürk University, Erzurum, Turkey.
Introduction/objective: Several nutraceuticals, food, and cosmetic products can be developed using royal jelly. It is known for its potential health benefits, including its ability to boost the immune system and reduce inflammation. It is rich in vitamins, minerals, and antioxidants, which can improve general health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!