Among luminal types of breast cancers, ER + breast cancer is the most frequently diagnosed cancer globally. ER + breast cancer is commonly treated with SERM drugs that block ER to prevent ER-mediated cancerous growth. Our previous computational screening found pelargonidin (PG) can inhibit ER-signaling with potent bioactivity and satisfactory toxicological features. The present study explored the anti-tumoral prospect of PG against DMBA-induced ER + murine mammary carcinogenesis. The female BALB/c mice were divided into control (A) and DMBA-exposed groups. Following tumor appearance, the DMBA-exposed group was divided into five groups: tumor control, PG-treated (Groups P25, P50, and P100), and tamoxifen-treated (TAM). The results indicated that PG-treatment dose-dependently reduced the mean tumor volume, reinstated body weight loss, and enhanced the percentage survival of tumor-bearing mice. In addition, we recorded a significant reduction in LPO, total cholesterol, and triglycerides and a surge in the activity of antioxidases and phase II detoxifying enzymes in PG-treated animals. PG also dose-dependently increased the serum level of unbound estradiol, an indicator of competitive ER binding by an ER agonist/antagonist. These data suggest that pelargonidin has potent anticancer potential against the animal model of ER + breast cancer that matches the efficiency of tamoxifen with conceivably fewer side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1080/01635581.2023.2219027DOI Listing

Publication Analysis

Top Keywords

er + breast cancer
12
balb/c mice
8
groups tumor
8
protective effects
4
effects pelargonidin
4
pelargonidin dmba-induced
4
dmba-induced mammary
4
mammary tumorigenesis
4
tumorigenesis balb/c
4
mice reduced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!