Probing the interaction between metastatic breast cancer cells and osteoblasts in a thread-based breast-bone co-culture device.

Lab Chip

Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China.

Published: June 2023

Breast cancer metastasis to bone is a leading killer in breast cancer patients. A type I collagen-modified thread (Col-I@thread) was prepared for 3-dimensional cell culture and breast cancer bone metastasis co-culture device assembly. First, the coating of Col-I on nylon threads for promoting cell adhesion and growth was studied. Through SEM, XPS, and protein concentration measurements, it was found that the lyophilization method remarkably preserved the Col-I activity and the internal structure of the thread, thereby promoting cell attachment and proliferation. RNA-sequencing (RNA-Seq) and quantitative PCR analysis showed that osteoblast cells (MC3T3-E1) grown on Col-I@thread had elevated RUNX2, ALP, OPN, and Col-I gene expression to promote osteoblast differentiation. Single-cell analysis found that osteoblast MC3T3-E1 cells growing on Col-I@thread had higher Ca secretion activity and mineralized nodules, suggesting robust cell activity and bone matrix formation than cells growing on 2D culture plates. Col-I@threads were knotted in an interdigital cross-finger frame to assemble the breast cancer-bone co-culture model. Confocal microscopy and flow cytometry tests quantified the invasive breast cancer cells. Moreover, the thread-based co-culture devices allowed us to isolate the invasive and non-invasive breast cancer cells to compare their molecular characteristics. qPCR results showed that expression of CX43, CXCR5, and CSPG4 genes was significantly increased in breast cancer cells with bone metastasis. Meanwhile, the expression of RUNX2 and OPG genes in osteoblasts was inhibited. The co-culture model based on the Col-I@thread mimics the bone tissue microenvironment to reveal the cross-talk between cancer cells and bone tissue. Moreover, the thread-based co-culture device is easy to fabricate and operate, providing a platform for exploring the cellular and molecular mechanisms of breast cancer bone metastasis, and holds potential for high-throughput screening of anti-breast cancer bone metastasis drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3lc00106gDOI Listing

Publication Analysis

Top Keywords

breast cancer
32
cancer cells
20
bone metastasis
16
co-culture device
12
cancer bone
12
cancer
10
breast
9
cells
8
bone
8
promoting cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!